Morfismos, Vol. 1, No. 1, 1997, pp. 35-46

The complexity of coding problems

Irasema Sarmiento¹

Abstract

In this work we deal with two problems related with the weight enumerator of a linear code. That is, determining the middle coefficient and the number of vectors in the code with no zero entries. We prove that the first problem is NP-hard because determining any coefficient of the weight enumerator is Turing reducible to determining the middle one. We prove as well that the second problem is NP-complete by reducing it to the problem of whether or not a graph is 3-colourable. We include the necessary background in complexity and matroids.

1991 Mathematics Subject Classification: 94B05, 68Q25. Keywords and phrases: Complexity, Linear Codes, Matroids.

1 Introduction

Here we give an informal introduction to the complexity concepts used in the next sections.

For any finite set Σ of symbols, we denote by Σ^* the set of all finite strings of symbols from Σ . If $L \subseteq \Sigma^*$, we say that L is a *language* over the alphabet Σ . An *encoding scheme* e for a *problem* Π provides a way of describing each instance of Π by an appropriate string of symbols over some fixed alphabet Σ . The *decision problems* have only two possible solutions, yes or no.

The language that we associate with Π and e is:

$$\begin{split} L[\Pi, e] &= \{ x \in \Sigma^* : \Sigma \text{ is the alphabet used by } e, \\ &\text{ and } x \text{ is the encoding under } e \text{ of an instance } I \in Y_{\Pi} \} \end{split}$$

¹Ph.D. student, Merton College, Oxford.

where Y_{Π} is the set of "yes" instances.

A deterministic Turing machine (DTM) is a model of computation. A program for a DTM includes a finite set of states with two distinguished halt-states q_Y and q_N . We say that a DTM program M with input alphabet Σ accepts $x \in \Sigma^*$ if and only if M halts in a state q_Y when applied to input x. The language L_M recognised by the program M is given by:

$$L_M = \{ x \in \Sigma^* : M \text{ accepts } x \}.$$

We say that a DTM program M solves the decision problem Π under encoding scheme e if M halts for all input strings over its input alphabet and $L_M = L[\Pi, e]$.

The time used in the computation of a DTM program M on an input x is the number of steps occurring in that computation up until a halt state is entered. For a DTM program M that halts for all inputs $x \in \Sigma^*$, its time complexity function $T_M : Z^+ \to Z^+$ is given by:

 $T_M(n) = \max\{m : \text{there is an } x \in \Sigma^*, \text{ with } |x| = n, \text{ such that}$ the computation of M on input x takes time $m\}.$

Such a program M is called a *polynomial time* DTM program if there exists a polynomial p such that $T_M(n) \leq p(n)$ for all positive integers n.

The class of languages P is defined as:

 $P = \{L : \text{there is a polynomial time} \\ \text{DTM program } M \text{ for which } L = L_M \}.$

We say that a decision problem Π belongs to P under the encoding scheme e if $L[\Pi, e] \in P$.

The class NP is intended to capture the idea of *polynomial time ver*ifiability, that is, given an instance I it can be verified in polynomial time if the answer for I is yes. Note that polynomial time verifiability does not imply polynomial time solvability unless NP = P. Formally NP can be defined using the notion of a program for a nondeterministic Turing machine (NDTM). Note that $P \subseteq NP$.

A polynomial transformation from a language $L_1 \subseteq \Sigma_1^*$ to a language $L_2 \subseteq \Sigma_2^*$ is a function $f : \Sigma_1^* \to \Sigma_2^*$ that satisfies:

1. There is a polynomial time DTM program that computes f.

2. For all $x \in \Sigma_1^*$, $x \in L_1$ if and only if $f(x) \in L_2$.

If there is a polynomial transformation from L_1 to L_2 we write $L_1 \propto L_2$. A language L is defined to be *NP-complete* if $L \in NP$ and $L' \propto L$ for all $L' \in NP$. Cook's major theorem is that NP-complete languages exist.

A search problem Π consists of a set D_{Π} of finite objects called *in*stances and, for each instance $I \in D_{\Pi}$, a set $S_{\Pi}[I]$ of finite objects called solutions for I. An algorithm is said to solve a search problem Π if, given as input any instance $I \in D_{\Pi}$, it returns the answer "no" whenever $S_{\Pi}[I]$ is empty and otherwise some solution s belonging to $S_{\Pi}[I]$.

A polynomial time Turing reduction (or simply Turing reduction) from a search problem Π to a search problem Π' is an algorithm A that solves Π by using a hypothetical subroutine S for solving Π' such that, if S was a polynomial time algorithm for Π' , then A would be a polynomial time algorithm for Π . We say that Π is Turing reducible to Π' . This can be defined formally using oracle Turing machines.

2 Linear codes

In this section we introduce some elementary concepts about linear codes.

We use F_q to denote the finite field with q elements, for q a prime power. A linear [n, k] q-ary code C is a subspace of dimension k of a vector space V of dimension n over F_q . The members of C are called codewords. We assume that $V = F_q^n$.

Irasema Sarmiento

Let $c = (c_1, \dots, c_n), c' = (c'_1, \dots, c'_n) \in C$. The Hamming distance between c and c' is defined as $d(c, c') = |\{i : c_i \neq c'_i\}|$; the weight of cis w(c) = d(c, 0).

The weight enumerator of C is the polynomial $A(C, q, z) = \sum_{i=0}^{n} a_i z^i$, where $a_i = |\{c \in C : w(c) = i\}|$. Note that $a_0 = 1$.

A generating matrix for C is a $k \times n$ matrix over F_q such that its rows form a basis of C. The dual code C^* of C is $C^* = \{v \in V : v \cdot c = 0 \\ \forall c \in C\}$. A generating matrix for C^* is called a *parity check matrix* for C.

Two codes are called *equivalent* if one can be obtained from the other by a sequence of operations of the following type:

- (A) permutation of the positions of the code;
- (B) multiplication of the symbols appearing in a fixed position by a non-zero scalar.

Let M_1 and M_2 be two generating matrices for the q-ary codes C_1 and C_2 . Then these two codes are equivalent if and only if M_2 can be obtained from M_1 by a sequence of the following operations:

- (R1) permutation of the rows;
- (R2) multiplication of a row by a non-zero scalar;
- (R3) addition of a scalar multiple of one row to another;
- (C1) permutation of the columns;
- (C2) multiplication of any column by a non-zero scalar.

Since equivalent codes have the same parameters (n, k) and the same weight enumerator, we can assume that, for a given code C, its generating matrix is in the *standard form* $[I_k|A]$. If it is not the case, then we can transform the given generating matrix (or a matrix whose rows are a generating set for C) into the generating matrix of an equivalent code by a sequence of the given operations and (R4) elimination of a zero row. Note that we can do it in polynomial time (this by Gaussian elimination). On the other hand, if $G = [I_k|A]$ is a generator matrix for an [n, k]-code C, then a parity-check matrix for C is $H = [-A^T|I_{n-k}]$, which we can obtain from G in polynomial time.

3 The hardest coefficient of A(C, q, z)

In this section we prove that for any $i \in \{1, \dots, n\}$, determining a_i is Turing reducible to determining $a_{\lfloor n/2 \rfloor}$.

Let $C \subseteq F_q^m$ be an [m, r]-code. Let $C' = \{c' \in F_q^{m+1} : c' = (c, 0), c \in C\}$. Note that A(C, q, z) = A(C', q, z) and, in fact, C and C' are isomorphic. Hence we can assume without loss of generality that m is even. Let $m/2 \leq i \leq m$ and $C'' = C \times \{0\}^{2i-m}$, then C'' is a code of length n = 2i over F_q , which can be constructed in polynomial time from C and $a''_i = a''_{n/2} = |\{c'' \in C'' : w(c'') = i = n/2\}| = |\{c \in C : w(c) = i\}| = a_i$. Now, let $1 \leq i < m/2$ and let U be a generating matrix for C, (n = 4m). Consider $C' \subseteq F_q^m$ with generating matrix $U' \in F_q^{r \times n}$ defined by:

$$U' = \begin{pmatrix} & 1 & 1 & \dots & 1 \\ & 0 & 0 & \dots & 0 \\ U & & \vdots & \vdots & & \vdots \\ & 0 & 0 & \dots & 0 \end{pmatrix}$$

By the definition of a generating matrix, the rows u_1, \dots, u_r of U are a basis for C and

$$\forall c \in C : \exists! \ \alpha_1, \cdots, \alpha_r \in F_q : c = \alpha_1 u_1 + \cdots + \alpha_r u_r$$

We are constructing C' in order to count the number of codewords such that $\alpha_1 \neq 0$. Note that we can construct C' in polynomial time. Observe that $\forall c' \in C' \exists ! \alpha_1, \cdots, \alpha_r \in F_q$:

$$c' = \alpha_1 u'_1 + \dots + \alpha_r u'_r$$

= $\alpha_1(u_{11}, \dots, u_{1m}, 1, \dots, 1) + \dots + \alpha_r(u_{r1}, \dots, u_{rm}, 0, \dots, 0)$
= $(\alpha_1 u_{11} + \dots + \alpha_r u_{r1}, \dots, \alpha_1 u_{1m} + \dots + \alpha_r u_{rm}, \alpha_1, \dots, \alpha_1),$

where u'_1, \dots, u'_r are the rows of U'.

Let $\Psi: C \to C'$ be such that $\Psi(\sum_{j=1}^{r} \alpha_j u_j) = \sum_{j=1}^{r} \alpha_j u'_j$. Then Ψ is an isomorphism and the sets $\{c \in C : \alpha_1 \neq 0\}$ and $\{c' \in C' : \alpha_1 \neq 0\}$ have the same cardinality, $|\{c' \in C' : w(c') \ge n - m\}|$, because $\alpha_1 \neq 0 \Leftrightarrow w(\Psi(c)) \ge n - m$ for any $c \in C$.

Now note that the function $\Phi : \{c \in C : w(c) = i \text{ and } \alpha_1 \neq 0\} \rightarrow \{c' \in C' : w(c') = i + n - m\}$ defined by $\Phi(\sum_{j=1}^r \alpha_j u_j) = \sum_{j=1}^r \alpha_j u'_j$ is

a bijection, and $|\{c \in C : w(c) = i \text{ and } \alpha_1 \neq 0\}| = |\{c' \in C' : w(c') = i + n - m\}| := \delta_1.$

But since $n/2 \leq i + n - m$, we can determine δ_1 in time bounded by a polynomial in n = 4m, and so, by a polynomial in m calling an oracle for $a_{\lfloor n/2 \rfloor}$.

Since $|\{c \in C : w(c) = i\}| = |\{c \in C : w(c) = i \text{ and } \alpha_1 = 0\}| + \delta_1$, we need to compute now $|\{c \in C : w(c) = i \text{ and } \alpha_1 = 0\}|$. In order to do this we define $C_1 \subseteq F_q^m$ with generating matrix

$$\left(\begin{array}{ccc} u_{21} & \dots & u_{2m} \\ \vdots & & \vdots \\ u_{r1} & \dots & u_{rm} \end{array}\right)$$

Clearly we can construct C_1 in polynomial time from C. Continuing with this process we have $a_i = |\{c \in C : w(c) = i \text{ and } \alpha_1 = \cdots \alpha_{r-1} = 0\}| + \delta_1 + \cdots + \delta_{r-1}$, where each of $\delta_1, \cdots, \delta_{r-1}$ can be determined in time bounded by a polynomial in m calling an oracle for $a_{\lfloor n/2 \rfloor}$.

On the other hand $\{c \in C : w(c) = i \text{ and } \alpha_1 = \cdots \alpha_{r-1} = 0\} = \{\alpha u_r : \alpha \in F_q \text{ and } w(c) = i\} = \{\alpha u_r : \alpha \in F_q^* \text{ and } w(c) = i\}$, which is equal to ϕ if $w(u_r) \neq i$ and q-1 otherwise. Therefore we can determine a_i in polynomial time using the algorithm to determine $a_{\lfloor n/2 \rfloor}$ as a subroutine.

4 An NP-complete problem

In this section we prove that given an [m, k] q-ary code C, the decision problem: is $a_m \neq 0$?, is NP-complete. In fact, we prove that the problem is NP-complete for q = 3, and so, we have the result for the general case. In Section 6 we give another proof of this result.

Note that when C is a binary code, we can determine a_m in polynomial time, because the only vector of length m in F_2^m is $(1, \ldots, 1)$ (the allone vector). But, working as in the case q = 3, the decision problem, is $a_m \neq 0$? is NP-complete for every q-ary code with q > 2. Also, for every fixed prime power q and positive integer t, we can determine $\{a_0, a_1, \ldots, a_t\}$ in polynomial time using exhaustive search. Let G = (V, E) be a loop less connected graph with $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_m\}$, and for all $j = 1, \ldots, m : e_j = \{v_{j_1}, v_{j_2}\}$ with $j_1 < j_2$. A proper (vertex) 3-colouring of G is a function $\phi : V \to F_3$ such that $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$. If such a function exists we say that G is 3-colourable. It is well known that the problem of deciding whether or not G is 3-colourable is NP-complete.

We construct in polynomial time a code $C < F_3^m$ such that $a_m \neq 0$ if and only if G is 3-colourable. That is, we prove that the decision problem, is G 3-colourable? is polynomial reducible to, is $a_m \neq 0$?.

Let $W = \{\phi : V \to F_3 : \phi \text{ is a function }\}$. Then W is a F_3 vector space with the usual operations.

For i = 1, ..., n we define $\chi_{v_i} : V \to F_3$ such that $\chi_{v_i}(v) = 1$ if $v = v_i$ and 0 otherwise; that is, χ_{v_i} is the characteristic function of $\{v_i\}$. Then $B = \{\chi_{v_1}, ..., \chi_{v_n}\}$ is a basis of W.

Now note that the elements of W are precisely the 3-colourings of G. For every $\phi \in W$ we define $c_{\phi} = (c_{\phi_1}, \ldots, c_{\phi_m}) \in F_3^m$ such that for all $j = 1, \ldots, m, c_{\phi_j} = \phi(v_{j_2}) - \phi(v_{j_1})$. Define $C = \{c \in F_3^m : \exists \phi \in W : c = c_{\phi}\}$. Then C is a subspace of F_3^m and $a_m \neq 0$ if and only if G is 3-colourable. In fact:

- (i) $c_{\phi} + c_{\psi} = c_{\phi+\psi}$
- (ii) $\forall \alpha \in F_3 : \alpha c_\phi = c_{\alpha\psi}.$

From this we can easily see that $C = \langle c_{\chi v_1}, \ldots, c_{\chi v_n} \rangle$. Here $St(v) = \{e \in E(G) : v \text{ is incident with } e\}$, and note that for all $i = 1, \ldots, n$ and for all $j = 1, \ldots, m$, $c_{(\chi v_i)j}$ is equal to 0 if e_j does not belong to $St(v_i)$, -1 if $e_j \in St(v_i)$ and $v_i = v_{j_1}$, and 1 if $e_j \in St(v_i)$ and $v_i = v_{j_2}$.

Given G we can construct these vectors in polynomial time. Let M be a matrix whose rows are R_1, \ldots, R_n and such that $R_i = c_{\chi_{v_i}}$ for all $i = 1, \ldots, n$. Using Gauss-elimination we can construct in polynomial time from M a generating matrix for our code C. So, the decision problem, is $a_m \neq 0$? is NP-complete.

5 Matroids and its representations

A matroid M is a pair (E, \mathcal{I}) , where E is a finite set and \mathcal{I} is a collection of subsets of E (the *independent* sets of M) satisfying the following conditions:

- (I1) $\phi \in I$.
- (I2) If $I_1 \in I$ and $I_2 \subseteq I_1$, then $I_2 \in I$.
- (I3) If I_1 and I_2 are in I and $|I_1| < |I_2|$, then $\exists x \in I_2 I_1 : I_1 \cup x \in I$.

A subset of E that is not in \mathcal{I} is called *dependent*.

The following are important subsets of the ground set E(M) of a matroid M:

- (i) The set of *circuits* of M which are the minimal dependent sets.
- (ii) The set of *bases* of M which consists of the maximal independent sets.

The rank of $A \subseteq E(M)$ is the cardinality of a maximal independent set contained in A.

A matroid can be defined by circuits, bases, or rank as well as by independent sets. The *dual* of M, denoted by M^* , is a matroid with ground set E(M) and bases set $\{E(M) - B : B \text{ is a basis of } M\}$. A *loop* is a circuit of M with one element, and a *coloop* (or *isthmus*) is a co-circuit of M (that is, a circuit of M^*) with cardinality one.

If $T \subseteq E(M)$, there is a matroid $M \setminus T$ (called the *deletion of* T from M) on $E \setminus T$ whose independent sets are those independent sets in M that are contained in $E \setminus T$. The contraction of T from M is defined by $M/T = (M^* \setminus T)^*$.

If E is the set of edges of a graph G and \mathcal{I} is the set of forests of G, then \mathcal{I} is the set of independent sets of a matroid M(G) on E called the *cycle matroid* of G.

Two matroids $M = (E, \mathcal{I})$ and $M' = (E', \mathcal{I}')$ are said to be *isomorphic* if there exists a bijection $\phi : E \to E'$ such that $I_1 \in \mathcal{I}$ if and only if $\phi(I_1) \in \mathcal{I}'$.

Let m = |E|, F be a field and A be an $r \times m$ matrix over F. The columns of A span a subspace W of F^r and form a matroid M' where \mathcal{I} is defined by linear independence. If M is isomorphic to M' we say

that A is a representation of M over F. For example, given a graph G (with n vertices and m edges) and a field F, the matrix A constructed as follows is a representation of M(G) over F. We orient the graph G in the following way, let $e_j = \{v_{j_1}, v_{j_2}\}$ $(j_1 < j_2)$, then (v_{j_2}, v_{j_1}) be the directed edge. Now consider the matrix $A \in F_3(n \times m)$ such that $a_{ij} = 1$ if the vertex i is the tail of arc j, -1 if vertex i is the head of arc j and 0 otherwise; and reduce each entry of A modulo F.

A matroid representable over F_2 is called *binary*, a matroid representable over F_3 is called *ternary* and a matroid representable over every field is called *regular*.

We prove now that the code C defined in Section 4 is generated by the rows of a matrix representation of M(G) over the field F_3 . Here M(G) is the cycle matroid of the graph G. Let $M \in F_3(n \times m)$ such that for all i = 1, ..., n, R_i (the *i*th row of M) is $C_{\chi_{v_i}}$. Then $m_{ij} = (c_{\chi_{v_i}})j = 1$ if $e_j \in St(v_i)$ and $v_i = v_{j_2}$, -1 if $e_j \in St(v_i)$ and $v_i = v_{j_1}$, and 0 otherwise; that is $m_{ij} = 1$ if v_i is the tail of the arc j, -1 if v_i is the head of the arc j, and 0 otherwise. Therefore A = M. It is known that A is a representation of M(G) over F_3 .

6 The Tutte polynomial and the weight enumerator of a linear code

Let M be a matroid with ground set E and rank function r, we define its *Tutte polynomial* as $t(M; x, y) = \sum_{X \subseteq E} (x - 1)^{r(E) - r(X)} (y - 1)^{|X| - r(X)}$. This is unique because of the following theorem.

Theorem 6.1 There is a unique function from the set of isomorphism classes of matroids to the polynomial ring $\mathbb{Z}[x, y]$ having the properties:

- (i) t(I; x, y) = x (I denotes an isthmus).
- (ii) t(L; x, y) = y (L denotes a loop).
- (iii) If $e \in E(M)$, then (deletion-contraction)
 - (a) $t(M; x, y) = t(M \setminus e; x, y) + t(M/e; x, y)$ if e is neither a loop nor an isthmus;

Irasema Sarmiento

(b)
$$t(M; x, y) = xt(M \setminus e; x, y)$$
 if e is an isthmus;

(c) t(M; x, y) = yt(M/e; x, y) if e is a loop.

Let M_1 and M_2 be two matroids with independent sets \mathcal{I}_1 and \mathcal{I}_2 respectively. Assume that $E(M_1) \cap E(M_2) = \phi$. Then the direct sum of M_1 and M_2 is the matroid with ground set $E_1 \cup E_2$ and independent sets $\{I_1 \cup I_2 : I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2\}$; this matroid is denoted by $M_1 \bigoplus M_2$.

A Tutte-Grothendieck invariant is a function f defined on a class of matroids closed under minors which satisfies:

- (i) $f(M) = af(M \setminus e; x, y) + bf(M/e; x, y)$ for $e \in E(M)$ not a loop or an isthmus.
- (ii) $f(M_1 \bigoplus M_2) = f(M_1)f(M_2)$.

Theorem 6.2 If f is a Tutte-Grothendieck invariant then $f(M) = a^{|E|-r(E)}b^{r(E)}t(M; \frac{x_0}{b}, \frac{y_0}{a})$ where x_0 and y_0 are the values f takes on coloops and loops respectively.

Given a linear code C and a generating matrix A of C, the matroid on the columns of A (defined by linear independence) depends only on C and not on the choice of A; this matroid is denoted by M(C). Let C^* be the dual code of C, then $M(C^*)$ is isomorphic to $M^*(C)$.

If A is a representation of the matroid M over some finite field F_q , then we denote by C(M) its associated linear code, the row space of A.

Concerning the weight enumerator we have the following

Proposition 6.3 $A(C;q,z) = (1-z)^k z^{n-k} t(M(C); \frac{1+(q-1)z}{1-z}, \frac{1}{z}).$

The classical MacWilliams duality formula for linear codes can be proved using this proposition. The MacWilliams formula is

$$A(C^*;q,z) = \frac{(1-(q-1)z)^n}{q^k} A(C;q,\frac{1-z}{1+(q-1)z}).$$

We already proved that if C is an [n, k, d] q-ary code, then the decision problem: is $a_n \neq 0$?, is NP-complete. We give here another proof

of this fact using the Tutte polynomial.

Let G be a graph. Let A be the matrix representation of M(G)over F_q constructed as described in Section 5, we can find it in polynomial time. Given a colouring ψ of G, we say that $e = \{u, v\} \in E(G)$ is a bad edge if $\psi(u) = \psi(v)$. The bad colouring polynomial of G is $B(G;q,z) = \sum_{l=0}^{n} b_l(q) z^l$ where $b_l(q)$ is the number of q colourings of G with exactly l bad edges.

It is known that $B(G;q,z) = (z-1)^k qt(M(G); \frac{z-1+q}{z-1}, z)$ where k is the rank of M(G). Now let C = C(M(G)). Then $A(C;q,z) = (1-z)^k z^{n-k} t(M(G); \frac{1+(q-1)Z}{1-z}, \frac{1}{z})$ and

$$\begin{aligned} \frac{z^n}{q} B(G;q,z^{-1}) &= z^n (\frac{1}{z}-1)^k t\left(M(G);\frac{(1/z)-1+q}{(1/z)-1},\frac{1}{z}\right) \\ &= z^n (\frac{1-z}{z})^k t\left(M(G);\frac{1-z+qz}{1-z},\frac{1}{z}\right) \\ &= (1-z)^k z^{n-k} t\left(M(G);\frac{1+(q-1)z}{1-z},\frac{1}{z}\right) \\ &= A(C;q,z). \end{aligned}$$

Therefore $A(C;q,z) = \frac{z^n}{q}B(G;q,\frac{1}{z})$, so

$$\sum_{i=0}^{n} a_i z^i = \frac{z^n}{q} \sum_{l=0}^{n} b_l(q) z^{-l} = \sum_{l=0}^{n} \frac{b_l(q)}{q} z^{n-l} = \sum_{i=0}^{n} \frac{b_{n-i}(q)}{q} z^i.$$

Then for all $i = 0, \dots, n$: $a_i = \frac{b_{n-i}(q)}{q}$ implies that for all $i = 0, \dots, n$: $qa_i = b_{n-i}(q)$ which is the number of q-colourings of G with n-i bad edges. Thus $qa_n = b_0(q)$ which is the number of good colourings of G.

For example, with q = 3, we have that $a_n \neq 0 \Leftrightarrow G$ is 3-colourable. So the problem: is $a_n \neq 0$? is NP-complete. As a corollary we have that determining a_n is $\sharp P$ -hard.

Acknowledgment

I thank my advisor D.J.A. Welsh for his support and guidance. I am grateful to the CONSEJO NACIONAL DE CIENCIA Y TECNOLO-

GIA (CONACyT) of México for the financial support I am receiving during my D.Phil. studies at Oxford.

Irasema Sarmiento Merton College, Oxford OX1 4JD, UK sarmient@maths.ox.ac.uk

References

- Garey M. R., Johnson D. S. Computers and intractability, W.H. Freeman and Company, 1991.
- [2] Oxley J. G. Matroid theory, Oxford University Press, 1992.
- [3] MacWilliams F. J., Sloane N. J. A. The theory of error-correcting codes North Holland, 1983.
- [4] Hill R. A first course in coding theory, Oxford University Press, 1993.
- [5] Brylawski T., Oxley J. G. The Tutte polynomial and its applications, Cambridge University Press, 1992.
- [6] Welsh D. J. A. Complexity: knots, colourings and counting, Cambridge University Press, 1993.