The complexity of coding problems

Irasema Sarmiento ${ }^{1}$

Abstract

In this work we deal with two problems related with the weight enumerator of a linear code. That is, determining the middle coefficient and the number of vectors in the code with no zero entries. We prove that the first problem is NP-hard because determining any coefficient of the weight enumerator is Turing reducible to determining the middle one. We prove as well that the second problem is NP-complete by reducing it to the problem of whether or not a graph is 3 -colourable. We include the necessary background in complexity and matroids.

1991 Mathematics Subject Classification: 94B05, 68Q25.
Keywords and phrases: Complexity, Linear Codes, Matroids.

1 Introduction

Here we give an informal introduction to the complexity concepts used in the next sections.

For any finite set Σ of symbols, we denote by Σ^{*} the set of all finite strings of symbols from Σ. If $L \subseteq \Sigma^{*}$, we say that L is a language over the alphabet Σ. An encoding scheme e for a problem Π provides a way of describing each instance of Π by an appropriate string of symbols over some fixed alphabet Σ. The decision problems have only two possible solutions, yes or no.

The language that we associate with Π and e is:
$L[\Pi, e]=\left\{x \in \Sigma^{*}: \Sigma\right.$ is the alphabet used by e, and x is the encoding under e of an instance $\left.I \in Y_{\Pi}\right\}$

[^0]where Y_{Π} is the set of "yes" instances.
A deterministic Turing machine (DTM) is a model of computation. A program for a DTM includes a finite set of states with two distinguished halt-states q_{Y} and q_{N}. We say that a DTM program M with input alphabet Σ accepts $x \in \Sigma^{*}$ if and only if M halts in a state q_{Y} when applied to input x. The language L_{M} recognised by the program M is given by:
$$
L_{M}=\left\{x \in \Sigma^{*}: M \quad \text { accepts } \quad x\right\} .
$$

We say that a DTM program M solves the decision problem Π under encoding scheme e if M halts for all input strings over its input alphabet and $L_{M}=L[\Pi, e]$.

The time used in the computation of a DTM program M on an input x is the number of steps occurring in that computation up until a halt state is entered. For a DTM program M that halts for all inputs $x \in \Sigma^{*}$, its time complexity function $T_{M}: Z^{+} \rightarrow Z^{+}$is given by:
$T_{M}(n)=\max \left\{m\right.$: there is an $x \in \Sigma^{*}$, with $|x|=n$, such that the computation of M on input x takes time $m\}$.

Such a program M is called a polynomial time DTM program if there exists a polynomial p such that $T_{M}(n) \leq p(n)$ for all positive integers n.

The class of languages P is defined as:

$$
P=\{L: \text { there is a polynomial time }
$$

$$
\text { DTM program } \left.M \text { for which } L=L_{M}\right\} \text {. }
$$

We say that a decision problem Π belongs to P under the encoding scheme e if $L[\Pi, e] \in P$.

The class NP is intended to capture the idea of polynomial time verifiability, that is, given an instance I it can be verified in polynomial time if the answer for I is yes. Note that polynomial time verifiability does not imply polynomial time solvability unless $N P=P$. Formally $N P$ can be defined using the notion of a program for a nondeterministic

Turing machine (NDTM). Note that $P \subseteq N P$.
A polynomial transformation from a language $L_{1} \subseteq \Sigma_{1}^{*}$ to a language $L_{2} \subseteq \Sigma_{2}^{*}$ is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ that satisfies:

1. There is a polynomial time DTM program that computes f.
2. For all $x \in \Sigma_{1}^{*}, x \in L_{1}$ if and only if $f(x) \in L_{2}$.

If there is a polynomial transformation from L_{1} to L_{2} we write $L_{1} \propto L_{2}$. A language L is defined to be $N P$-complete if $L \in N P$ and $L^{\prime} \propto L$ for all $L^{\prime} \in N P$. Cook's major theorem is that NP-complete languages exist.

A search problem Π consists of a set D_{Π} of finite objects called instances and, for each instance $I \in D_{\Pi}$, a set $S_{\Pi}[I]$ of finite objects called solutions for I. An algorithm is said to solve a search problem Π if, given as input any instance $I \in D_{\Pi}$, it returns the answer "no" whenever $S_{\Pi}[I]$ is empty and otherwise some solution s belonging to $S_{\Pi}[I]$.

A polynomial time Turing reduction (or simply Turing reduction) from a search problem Π to a search problem Π^{\prime} is an algorithm A that solves Π by using a hypothetical subroutine S for solving Π^{\prime} such that, if S was a polynomial time algorithm for Π^{\prime}, then A would be a polynomial time algorithm for Π. We say that Π is Turing reducible to Π^{\prime}. This can be defined formally using oracle Turing machines.

2 Linear codes

In this section we introduce some elementary concepts about linear codes.

We use F_{q} to denote the finite field with q elements, for q a prime power. A linear $[n, k] \mathrm{q}$-ary code C is a subspace of dimension k of a vector space V of dimension n over F_{q}. The members of C are called codewords. We assume that $V=F_{q}^{n}$.

Let $c=\left(c_{1}, \cdots, c_{n}\right), c^{\prime}=\left(c_{1}^{\prime}, \cdots, c_{n}^{\prime}\right) \in C$. The Hamming distance between c and c^{\prime} is defined as $d\left(c, c^{\prime}\right)=\left|\left\{i: c_{i} \neq c_{i}^{\prime}\right\}\right|$; the weight of c is $w(c)=d(c, 0)$.

The weight enumerator of C is the polynomial $A(C, q, z)=\sum_{i=0}^{n} a_{i} z^{i}$, where $a_{i}=|\{c \in C: w(c)=i\}|$. Note that $a_{0}=1$.

A generating matrix for C is a $k \times n$ matrix over F_{q} such that its rows form a basis of C. The dual code C^{*} of C is $C^{*}=\{v \in V: v \cdot c=0$ $\forall c \in C\}$. A generating matrix for C^{*} is called a parity check matrix for C.

Two codes are called equivalent if one can be obtained from the other by a sequence of operations of the following type:
(A) permutation of the positions of the code;
(B) multiplication of the symbols appearing in a fixed position by a non-zero scalar.

Let M_{1} and M_{2} be two generating matrices for the q-ary codes C_{1} and C_{2}. Then these two codes are equivalent if and only if M_{2} can be obtained from M_{1} by a sequence of the following operations:
(R1) permutation of the rows;
(R2) multiplication of a row by a non-zero scalar;
(R3) addition of a scalar multiple of one row to another;
(C1) permutation of the columns;
(C2) multiplication of any column by a non-zero scalar.
Since equivalent codes have the same parameters (n, k) and the same weight enumerator, we can assume that, for a given code C, its generating matrix is in the standard form $\left[I_{k} \mid A\right]$. If it is not the case, then we can transform the given generating matrix (or a matrix whose rows are a generating set for C) into the generating matrix of an equivalent code by a sequence of the given operations and (R4) elimination of a zero row. Note that we can do it in polynomial time (this by Gaussian elimination). On the other hand, if $G=\left[I_{k} \mid A\right]$ is a generator matrix for an $[n, k]$-code C, then a parity-check matrix for C is $H=\left[-A^{T} \mid I_{n-k}\right]$, which we can obtain from G in polynomial time.

3 The hardest coefficient of $A(C, q, z)$

In this section we prove that for any $i \in\{1, \cdots, n\}$, determining a_{i} is Turing reducible to determining $a_{\lfloor n / 2\rfloor}$.

Let $C \subseteq F_{q}^{m}$ be an $[m, r]$-code. Let $C^{\prime}=\left\{c^{\prime} \in F_{q}^{m+1}: c^{\prime}=(c, 0), c \in\right.$ $C\}$. Note that $A(C, q, z)=A\left(C^{\prime}, q, z\right)$ and, in fact, C and C^{\prime} are isomorphic. Hence we can assume without loss of generality that m is even. Let $m / 2 \leq i \leq m$ and $C^{\prime \prime}=C \times\{0\}^{2 i-m}$, then $C^{\prime \prime}$ is a code of length $n=2 i$ over F_{q}, which can be constructed in polynomial time from C and $a_{i}^{\prime \prime}=a_{n / 2}^{\prime \prime}=\left|\left\{c^{\prime \prime} \in C^{\prime \prime}: w\left(c^{\prime \prime}\right)=i=n / 2\right\}\right|=|\{c \in C: w(c)=i\}|=a_{i}$. Now, let $1 \leq i<m / 2$ and let U be a generating matrix for $C,(n=4 m)$. Consider $C^{\prime} \subseteq F_{q}^{m}$ with generating matrix $U^{\prime} \in F_{q}^{r \times n}$ defined by:

$$
U^{\prime}=\left(\begin{array}{ccccc}
& 1 & 1 & \ldots & 1 \\
U & 0 & \ldots & 0 \\
& \vdots & \vdots & & \vdots \\
& 0 & 0 & \ldots & 0
\end{array}\right)
$$

By the definition of a generating matrix, the rows u_{1}, \cdots, u_{r} of U are a basis for C and

$$
\forall c \in C: \exists!\alpha_{1}, \cdots, \alpha_{r} \in F_{q}: c=\alpha_{1} u_{1}+\cdots+\alpha_{r} u_{r} .
$$

We are constructing C^{\prime} in order to count the number of codewords such that $\alpha_{1} \neq 0$. Note that we can construct C^{\prime} in polynomial time. Observe that $\forall c^{\prime} \in C^{\prime} \exists!\alpha_{1}, \cdots, \alpha_{r} \in F_{q}$:

$$
\begin{aligned}
c^{\prime} & =\alpha_{1} u_{1}^{\prime}+\cdots+\alpha_{r} u_{r}^{\prime} \\
& =\alpha_{1}\left(u_{11}, \cdots, u_{1 m}, 1, \cdots, 1\right)+\cdots+\alpha_{r}\left(u_{r 1}, \cdots, u_{r m}, 0, \cdots, 0\right) \\
& =\left(\alpha_{1} u_{11}+\cdots+\alpha_{r} u_{r 1}, \cdots, \alpha_{1} u_{1 m}+\cdots+\alpha_{r} u_{r m}, \alpha_{1}, \cdots, \alpha_{1}\right),
\end{aligned}
$$

where $u_{1}^{\prime}, \cdots, u_{r}^{\prime}$ are the rows of U^{\prime}.
Let $\Psi: C \rightarrow C^{\prime}$ be such that $\Psi\left(\sum_{j=1}^{r} \alpha_{j} u_{j}\right)=\sum_{j=1}^{r} \alpha_{j} u_{j}^{\prime}$. Then Ψ is an isomorphism and the sets $\left\{c \in C: \alpha_{1} \neq 0\right\}$ and $\left\{c^{\prime} \in C^{\prime}: \alpha_{1} \neq 0\right\}$ have the same cardinality, $\left|\left\{c^{\prime} \in C^{\prime}: w\left(c^{\prime}\right) \geq n-m\right\}\right|$, because $\alpha_{1} \neq$ $0 \Leftrightarrow w(\Psi(c)) \geq n-m$ for any $c \in C$.

Now note that the function $\Phi:\left\{c \in C: w(c)=i\right.$ and $\left.\alpha_{1} \neq 0\right\} \rightarrow$ $\left\{c^{\prime} \in C^{\prime}: w\left(c^{\prime}\right)=i+n-m\right\}$ defined by $\Phi\left(\sum_{j=1}^{r} \alpha_{j} u_{j}\right)=\sum_{j=1}^{r} \alpha_{j} u_{j}^{\prime}$ is
a bijection, and $\mid\left\{c \in C: w(c)=i\right.$ and $\left.\alpha_{1} \neq 0\right\}|=|\left\{c^{\prime} \in C^{\prime}: w\left(c^{\prime}\right)=\right.$ $i+n-m\} \mid:=\delta_{1}$.

But since $n / 2 \leq i+n-m$, we can determine δ_{1} in time bounded by a polynomial in $n=4 m$, and so, by a polynomial in m calling an oracle for $a_{\lfloor n / 2\rfloor}$.

Since $|\{c \in C: w(c)=i\}|=\mid\left\{c \in C: w(c)=i\right.$ and $\left.\alpha_{1}=0\right\} \mid+\delta_{1}$, we need to compute now $\mid\left\{c \in C: w(c)=i\right.$ and $\left.\alpha_{1}=0\right\} \mid$. In order to do this we define $C_{1} \subseteq F_{q}^{m}$ with generating matrix

$$
\left(\begin{array}{ccc}
u_{21} & \ldots & u_{2 m} \\
\vdots & & \vdots \\
u_{r 1} & \ldots & u_{r m}
\end{array}\right)
$$

Clearly we can construct C_{1} in polynomial time from C. Continuing with this process we have $a_{i}=\mid\left\{c \in C: w(c)=i\right.$ and $\alpha_{1}=\cdots \alpha_{r-1}=$ $0\} \mid+\delta_{1}+\cdots+\delta_{r-1}$, where each of $\delta_{1}, \cdots \delta_{r-1}$ can be determined in time bounded by a polynomial in m calling an oracle for $a_{\lfloor n / 2\rfloor}$.

On the other hand $\left\{c \in C: w(c)=i\right.$ and $\left.\alpha_{1}=\cdots \alpha_{r-1}=0\right\}=$ $\left\{\alpha u_{r}: \alpha \in F_{q}\right.$ and $\left.w(c)=i\right\}=\left\{\alpha u_{r}: \alpha \in F_{q}^{*}\right.$ and $\left.w(c)=i\right\}$, which is equal to ϕ if $w\left(u_{r}\right) \neq i$ and $q-1$ otherwise. Therefore we can determine a_{i} in polynomial time using the algorithm to determine $a_{\lfloor n / 2\rfloor}$ as a subroutine.

4 An NP-complete problem

In this section we prove that given an $[m, k] q$-ary code C, the decision problem: is $a_{m} \neq 0$?, is NP-complete. In fact, we prove that the problem is NP-complete for $q=3$, and so, we have the result for the general case. In Section 6 we give another proof of this result.
Note that when C is a binary code, we can determine a_{m} in polynomial time, because the only vector of length m in F_{2}^{m} is $(1, \ldots, 1)$ (the allone vector). But, working as in the case $q=3$, the decision problem, is $a_{m} \neq 0$? is NP-complete for every q-ary code with $q>2$. Also, for every fixed prime power q and positive integer t, we can determine $\left\{a_{0}, a_{1}, \ldots, a_{t}\right\}$ in polynomial time using exhaustive search.

Let $G=(V, E)$ be a loop less connected graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$, and for all $j=1, \ldots, m: e_{j}=\left\{v_{j_{1}}, v_{j_{2}}\right\}$ with $j_{1}<j_{2}$. A proper (vertex) 3-colouring of G is a function $\phi: V \rightarrow F_{3}$ such that $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$. If such a function exists we say that G is 3 -colourable. It is well known that the problem of deciding whether or not G is 3 -colourable is NP-complete.
We construct in polynomial time a code $C<F_{3}^{m}$ such that $a_{m} \neq 0$ if and only if G is 3 -colourable. That is, we prove that the decision problem, is $G 3$-colourable? is polynomial reducible to, is $a_{m} \neq 0$?.
Let $W=\left\{\phi: V \rightarrow F_{3}: \phi\right.$ is a function $\}$. Then W is a F_{3} vector space with the usual operations.
For $i=1, \ldots, n$ we define $\chi_{v_{i}}: V \rightarrow F_{3}$ such that $\chi_{v_{i}}(v)=1$ if $v=v_{i}$ and 0 otherwise; that is, $\chi_{v_{i}}$ is the characteristic function of $\left\{v_{i}\right\}$.
Then $B=\left\{\chi_{v_{1}}, \ldots, \chi_{v_{n}}\right\}$ is a basis of W.
Now note that the elements of W are precisely the 3 -colourings of G. For every $\phi \in W$ we define $c_{\phi}=\left(c_{\phi_{1}}, \ldots, c_{\phi_{m}}\right) \in F_{3}^{m}$ such that for all $j=1, \ldots, m, c_{\phi_{j}}=\phi\left(v_{j_{2}}\right)-\phi\left(v_{j_{1}}\right)$. Define $C=\left\{c \in F_{3}^{m}: \exists \phi \in W:\right.$ $\left.c=c_{\phi}\right\}$. Then C is a subspace of F_{3}^{m} and $a_{m} \neq 0$ if and only if G is 3 -colourable. In fact:
(i) $c_{\phi}+c_{\psi}=c_{\phi+\psi}$
(ii) $\forall \alpha \in F_{3}: \alpha c_{\phi}=c_{\alpha \psi}$.

From this we can easily see that $C=\left\langle c_{\chi_{v_{1}}}, \ldots, c_{\chi_{v_{n}}}\right\rangle$. Here $S t(v)=$ $\{e \in E(G): v$ is incident with $e\}$, and note that for all $i=1, \ldots, n$ and for all $j=1, \ldots, m, c_{\left(\chi_{v_{i}}\right) j}$ is equal to 0 if e_{j} does not belong to $\operatorname{St}\left(v_{i}\right)$, -1 if $e_{j} \in S t\left(v_{i}\right)$ and $v_{i}=v_{j_{1}}$, and 1 if $e_{j} \in S t\left(v_{i}\right)$ and $v_{i}=v_{j_{2}}$.

Given G we can construct these vectors in polynomial time. Let M be a matrix whose rows are R_{1}, \ldots, R_{n} and such that $R_{i}=c_{\chi_{v_{i}}}$ for all $i=1, \ldots, n$. Using Gauss-elimination we can construct in polynomial time from M a generating matrix for our code C. So, the decision problem, is $a_{m} \neq 0$? is NP-complete.

5 Matroids and its representations

A matroid M is a pair (E, \mathcal{I}), where E is a finite set and \mathcal{I} is a collection of subsets of E (the independent sets of M) satisfying the following conditions:
(I1) $\phi \in I$.
(I2) If $I_{1} \in I$ and $I_{2} \subseteq I_{1}$, then $I_{2} \in I$.
(I3) If I_{1} and I_{2} are in I and $\left|I_{1}\right|<\left|I_{2}\right|$, then $\exists x \in I_{2}-I_{1}: I_{1} \cup x \in I$.
A subset of E that is not in \mathcal{I} is called dependent.
The following are important subsets of the ground set $E(M)$ of a matroid M :
(i) The set of circuits of M which are the minimal dependent sets.
(ii) The set of bases of M which consists of the maximal independent sets.

The rank of $A \subseteq E(M)$ is the cardinality of a maximal independent set contained in A.

A matroid can be defined by circuits, bases, or rank as well as by independent sets. The dual of M, denoted by M^{*}, is a matroid with ground set $E(M)$ and bases set $\{E(M)-B: B$ is a basis of $M\}$. A loop is a circuit of M with one element, and a coloop (or isthmus) is a co-circuit of M (that is, a circuit of M^{*}) with cardinality one.

If $T \subseteq E(M)$, there is a matroid $M \backslash T$ (called the deletion of T from M) on $E \backslash T$ whose independent sets are those independent sets in M that are contained in $E \backslash T$. The contraction of T from M is defined by $M / T=\left(M^{*} \backslash T\right)^{*}$.

If E is the set of edges of a graph G and \mathcal{I} is the set of forests of G, then \mathcal{I} is the set of independent sets of a matroid $M(G)$ on E called the cycle matroid of G.

Two matroids $M=(E, \mathcal{I})$ and $M^{\prime}=\left(E^{\prime}, \mathcal{I}^{\prime}\right)$ are said to be isomorphic if there exists a bijection $\phi: E \rightarrow E^{\prime}$ such that $I_{1} \in \mathcal{I}$ if and only if $\phi\left(I_{1}\right) \in \mathcal{I}^{\prime}$.

Let $m=|E|, F$ be a field and A be an $r \times m$ matrix over F. The columns of A span a subspace W of F^{r} and form a matroid M^{\prime} where \mathcal{I} is defined by linear independence. If M is isomorphic to M^{\prime} we say
that A is a representation of M over F. For example, given a graph G (with n vertices and m edges) and a field F, the matrix A constructed as follows is a representation of $M(G)$ over F. We orient the graph G in the following way, let $e_{j}=\left\{v_{j_{1}}, v_{j_{2}}\right\}\left(j_{1}<j_{2}\right)$, then $\left(v_{j_{2}}, v_{j_{1}}\right)$ be the directed edge. Now consider the matrix $A \in F_{3}(n \times m)$ such that $a_{i j}=1$ if the vertex i is the tail of arc $j,-1$ if vertex i is the head of arc j and 0 otherwise; and reduce each entry of A modulo F.

A matroid representable over F_{2} is called binary, a matroid representable over F_{3} is called ternary and a matroid representable over every field is called regular.

We prove now that the code C defined in Section 4 is generated by the rows of a matrix representation of $M(G)$ over the field F_{3}. Here $M(G)$ is the cycle matroid of the graph G. Let $M \in F_{3}(n \times m)$ such that for all $i=1, \ldots, n, R_{i}$ (the i th row of M) is $C_{\chi_{v_{i}}}$. Then $m_{i j}=\left(c_{\chi_{v_{i}}}\right) j=1$ if $e_{j} \in S t\left(v_{i}\right)$ and $v_{i}=v_{j_{2}},-1$ if $e_{j} \in S t\left(v_{i}\right)$ and $v_{i}=v_{j_{1}}$, and 0 otherwise; that is $m_{i j}=1$ if v_{i} is the tail of the arc j, -1 if v_{i} is the head of the arc j, and 0 otherwise. Therefore $A=M$. It is known that A is a representation of $M(G)$ over F_{3}.

6 The Tutte polynomial and the weight enumerator of a linear code

Let M be a matroid with ground set E and rank function r, we define its Tutte polynomial as $t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}$. This is unique because of the following theorem.

Theorem 6.1 There is a unique function from the set of isomorphism classes of matroids to the polynomial ring $\mathbb{Z}[x, y]$ having the properties:
(i) $t(I ; x, y)=x(I$ denotes an isthmus).
(ii) $t(L ; x, y)=y(L$ denotes a loop $)$.
(iii) If $e \in E(M)$, then (deletion-contraction)
(a) $t(M ; x, y)=t(M \backslash e ; x, y)+t(M / e ; x, y)$ if e is neither a loop nor an isthmus;
(b) $t(M ; x, y)=x t(M \backslash e ; x, y)$ if e is an isthmus;
(c) $t(M ; x, y)=y t(M / e ; x, y)$ if e is a loop.

Let M_{1} and M_{2} be two matroids with independent sets \mathcal{I}_{1} and \mathcal{I}_{2} respectively. Assume that $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\phi$. Then the direct sum of M_{1} and M_{2} is the matroid with ground set $E_{1} \cup E_{2}$ and independent sets $\left\{I_{1} \cup I_{2}: I_{1} \in \mathcal{I}_{1}, I_{2} \in \mathcal{I}_{2}\right\} ;$ this matroid is denoted by $M_{1} \bigoplus M_{2}$.

A Tutte-Grothendieck invariant is a function f defined on a class of matroids closed under minors which satisfies:
(i) $f(M)=a f(M \backslash e ; x, y)+b f(M / e ; x, y)$ for $e \in E(M)$ not a loop or an isthmus.
(ii) $f\left(M_{1} \bigoplus M_{2}\right)=f\left(M_{1}\right) f\left(M_{2}\right)$.

Theorem 6.2 If f is a Tutte-Grothendieck invariant then $f(M)=a^{|E|-r(E)} b^{r(E)} t\left(M ; \frac{x_{0}}{b}, \frac{y_{0}}{a}\right)$ where x_{0} and y_{0} are the values f takes on coloops and loops respectively.

Given a linear code C and a generating matrix A of C, the matroid on the columns of A (defined by linear independence) depends only on C and not on the choice of A; this matroid is denoted by $M(C)$. Let C^{*} be the dual code of C, then $M\left(C^{*}\right)$ is isomorphic to $M^{*}(C)$.

If A is a representation of the matroid M over some finite field F_{q}, then we denote by $C(M)$ its associated linear code, the row space of A.

Concerning the weight enumerator we have the following

Proposition 6.3 $A(C ; q, z)=(1-z)^{k} z^{n-k} t\left(M(C) ; \frac{1+(q-1) z}{1-z}, \frac{1}{z}\right)$.
The classical MacWilliams duality formula for linear codes can be proved using this proposition. The MacWilliams formula is

$$
A\left(C^{*} ; q, z\right)=\frac{(1-(q-1) z)^{n}}{q^{k}} A\left(C ; q, \frac{1-z}{1+(q-1) z}\right) .
$$

We already proved that if C is an $[n, k, d] q$-ary code, then the decision problem: is $a_{n} \neq 0$?, is NP-complete. We give here another proof
of this fact using the Tutte polynomial.
Let G be a graph. Let A be the matrix representation of $M(G)$ over F_{q} constructed as described in Section 5, we can find it in polynomial time. Given a colouring ψ of G, we say that $e=\{u, v\} \in E(G)$ is a bad edge if $\psi(u)=\psi(v)$. The bad colouring polynomial of G is $B(G ; q, z)=\sum_{l=0}^{n} b_{l}(q) z^{l}$ where $b_{l}(q)$ is the number of q colourings of G with exactly l bad edges.

It is known that $B(G ; q, z)=(z-1)^{k} q t\left(M(G) ; \frac{z-1+q}{z-1}, z\right)$ where k is the rank of $M(G)$. Now let $C=C(M(G))$. Then $A(C ; q, z)=$ $(1-z)^{k} z^{n-k} t\left(M(G) ; \frac{1+(q-1) Z}{1-z}, \frac{1}{z}\right)$ and

$$
\begin{aligned}
\frac{z^{n}}{q} B\left(G ; q, z^{-1}\right) & =z^{n}\left(\frac{1}{z}-1\right)^{k} t\left(M(G) ; \frac{(1 / z)-1+q}{(1 / z)-1}, \frac{1}{z}\right) \\
& =z^{n}\left(\frac{1-z}{z}\right)^{k} t\left(M(G) ; \frac{1-z+q z}{1-z}, \frac{1}{z}\right) \\
& =(1-z)^{k} z^{n-k} t\left(M(G) ; \frac{1+(q-1) z}{1-z}, \frac{1}{z}\right) \\
& =A(C ; q, z) .
\end{aligned}
$$

Therefore $A(C ; q, z)=\frac{z^{n}}{q} B\left(G ; q, \frac{1}{z}\right)$, so

$$
\sum_{i=0}^{n} a_{i} z^{i}=\frac{z^{n}}{q} \sum_{l=0}^{n} b_{l}(q) z^{-l}=\sum_{l=0}^{n} \frac{b_{l}(q)}{q} z^{n-l}=\sum_{i=0}^{n} \frac{b_{n-i}(q)}{q} z^{i} .
$$

Then for all $i=0, \cdots, n: a_{i}=\frac{b_{n-i}(q)}{q}$ implies that for all $i=$ $0, \cdots, n: q a_{i}=b_{n-i}(q)$ which is the number of q-colourings of G with $n-i$ bad edges. Thus $q a_{n}=b_{0}(q)$ which is the number of good colourings of G.

For example, with $q=3$, we have that $a_{n} \neq 0 \Leftrightarrow G$ is 3-colourable. So the problem: is $a_{n} \neq 0$? is NP-complete. As a corollary we have that determining a_{n} is $\sharp P$-hard.

Acknowledgment

I thank my advisor D.J.A. Welsh for his support and guidance. I am grateful to the CONSEJO NACIONAL DE CIENCIA Y TECNOLO-

GIA (CONACyT) of México for the financial support I am receiving during my D.Phil. studies at Oxford.

Irasema Sarmiento
Merton College,
Oxford OX1 4JD,
UK
sarmient@maths.ox.ac.uk

References

[1] Garey M. R., Johnson D. S. Computers and intractability, W.H. Freeman and Company, 1991.
[2] Oxley J. G. Matroid theory, Oxford University Press, 1992.
[3] MacWilliams F. J., Sloane N. J. A. The theory of error-correcting codes North Holland, 1983.
[4] Hill R. A first course in coding theory, Oxford University Press, 1993.
[5] Brylawski T., Oxley J. G. The Tutte polynomial and its applications, Cambridge University Press, 1992.
[6] Welsh D. J. A. Complexity: knots, colourings and counting, Cambridge University Press, 1993.

[^0]: ${ }^{1}$ Ph.D. student, Merton College, Oxford.

