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The equations of the cone associated to the Rees

algebra of the ideal of square-free k-products ∗

Adrián Alcántar

Abstract

In this paper we determine the equations of the polyhedral cone
generated by the exponent vectors of the monomials defining the
Rees algebra of the ideal generated by the square-free monomials
of degree k in n variables. Some applications are presented to
show the relevance of the computation of these equations.
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1 The equations of the cone

In this paper we determine the equations of the polyhedral cone gener-
ated by the exponent vectors of the monomials defining the Rees algebra
of the ideal generated by the square-free monomials of degree k in n vari-
ables (see Theorem 1.9). The importance of knowing those equations
comes from the fact that the canonical module of the Rees algebra can
be expressed in terms of the relative interior of the cone. This would
allow to compute the a-invariant and the type of those Rees algebras.
Another possible application is to find degree bounds for the generators
of the integral closure of the Rees algebra of any ideal generated by
square-free monomials of the same degree.
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Preliminaries on polyhedral geometry An affine space in Rn is
by definition a translation of a linear subspace of Rn. Let A ⊂ Rn and
aff(A) the affine space generated by A. Recall that aff(A) is the set of
all affine combinations of points in A:

aff(A) = {a1p1 + · · ·+ arpr| pi ∈ A, a1 + · · ·+ ar = 1, ai ∈ R}.

There is a unique linear subspace V of Rn such that

aff(A) = x0 + V,

for some x0 ∈ Rn. The dimension of A is defined as dim A = dimR(V ).
If 0 ̸= a ∈ Rn, then Ha will denote the hyperplane of Rn through

the origin with normal vector a, that is,

Ha = {x ∈ Rn| ⟨x, a⟩ = 0},

where ⟨ , ⟩ is the usual inner product in Rn. The two closed halfspaces
bounded by Ha are

H+
a = {x ∈ Rn| ⟨x, a⟩ ≥ 0} and H−

a = {x ∈ Rn| ⟨x, a⟩ ≤ 0}.

Recall that a polyhedral cone Q ⊂ Rn is the intersection of a finite
number of closed halfspaces of the form H+

a . If A = {β1, . . . , βq} is a
finite set of points in Rn the cone generated by A, denoted by R+A, is
defined as

R+A =

{
q∑

i=1

aiβi

∣∣∣∣∣ ai ∈ R+, for all i

}
Where R+ denotes the set of nonnegative real numbers. An important
fact is that Q is a polyhedral cone in Rn if and only if there exists a
finite set A ⊂ Rn such that Q = R+A, see [9, Theorem 4.1.1].

Definition 1.1 A proper face of a polyhedral cone Q is a subset F ⊂ Q
such that there is a supporting hyperplane Ha satisfying:

(a) F = Q ∩Ha ̸= ∅,

(b) Q ̸⊂ Ha and Q ⊂ H+
a .

The improper faces of Q are Q itself and ∅.

Definition 1.2 A proper face F of a polyhedral cone Q ⊂ Rn is called
a facet of Q if

dim(F ) = dim(Q)− 1.
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Definition 1.3 If a polyhedral cone Q is written as

Q = H+
a1 ∩ · · · ∩H+

ar

such that no one of the H+
ai can be omitted, then we say that this is an

irreducible representation of Q.

It follows from the theorem below that if a polyhedral cone Q is not
an affine space and has the dimension of the ambient space, then there
is only one irreducible representation of Q.

Theorem 1.4 Let Q be a polyhedral cone in Rn with dim(Q) = n and
such that Q ̸= Rn. Let

Q = H+
a1 ∩ · · · ∩H+

ar (∗)

be a representation of Q with H+
a1 , . . . , H

+
ar distinct, where ai ∈ Rn \{0}

for all i. Set Fi = Q ∩Hai, for each i = 1, . . . , r. Then

(a) ri(Q) = {x ∈ Rn| ⟨x, a1⟩ > 0, . . . , ⟨x, ar⟩ > 0}, where ri(Q) is the
relative interior of Q, which in this case is just the interior.

(b) Each facet F of Q is of the form F = Fi for some i.

(c) Each Fi is a facet of Q if and only if (∗) is irreducible.

Proof: See [1, Theorem 8.2] and [9, Theorem 3.2.1]. 2

The following two results are quite useful to determine the facets of
a polyhedral cone.

Proposition 1.5 Let A be a finite set of points in Zn. If F is a nonzero
face of R+A, then F = R+A′ for some A′ ⊂ A.

Proof: Let F = R+A ∩ Ha with R+A ⊂ H+
a . Then F is equal to the

cone generated by the set A′ = {α ∈ A| ⟨α, a⟩ = 0}. 2

Corollary 1.6 Let A be a finite set of points in Zn and F a face of
R+A.

(a) If dimF = 1 and A ⊂ Nn, then F = R+α for some α ∈ A.

(b) If dimR+A = n and F is a facet defined by the supporting hyper-
plane Ha, then Ha is generated by a linearly independent subset
of A.
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Definition 1.7 Let Q be a polyhedral cone in Rn with dim(Q) = n
and such that Q ̸= Rn. Let

Q = H+
a1 ∩ · · · ∩H+

ar (∗)

be the irreducible representation of Q. If ai = (ai1, . . . , ain) we call

ai1x1 + · · ·+ ainxn = 0, i = 1, . . . , r

the equations of the cone Q.

Remark 1.8 If Q = R+α1+· · ·+R+αq ̸= Rn with αi ∈ Qn for all i and
dim(Q) = n, then it is not hard to prove that there are unique (up to
sign) a1, . . . , ar in Zn with relative prime entries and such that (∗) is the
irreducible representation of Q. Indeed note that if Ha is a supporting
hyperplane generated by a subset of n− 1 linearly independent vectors
in {α1, . . . , αq}, then Ha has an orthogonal basis of vectors in Qn and
consequently there is a normal vector b to Ha such that b ∈ Qn and
Ha = Hb.

The main result First let us fix some of the notation that will be
used throughout the remaining of this note. Let K be a field and

R = K[X1, . . . , Xn]

a polynomial ring with coefficients in K. Given two positive integers
k, n with k ≤ n we define

Fn,k = {{i1, i2, . . . , ik} | 1 ≤ i1 < i2 < · · · < ik ≤ n},

note that |Fn,k| = (nk ).

We will use the notation X{i1,...,ik} for the monomial Xi1Xi2 · · ·Xik ,
where {i1, . . . , ik} ∈ Fn,k. If α = (α1, . . . , αn) is a vector with non
negative integral entries we will setXα = Xα1

1 · · ·Xαn
n and log(Xα) = α.

Let F = {Xα|α ∈ Fn,k} be the set of square-free k-products. The
Rees algebra of the ideal I = ⟨F ⟩ will be denoted by

R(I) = K[X1, . . . , Xn, FT ]

= K[X1, . . . , Xn, f1T, . . . , f(n
k
)T ] ⊂ R[T ],

where T is a new variable and F = {f1, . . . , f(n
k
)}. We can make

this algebra standard with the following graduation deg(Xi) = 1 and
deg(T ) = 1− k, that is, with this graduation deg(fiT ) = 1 for all i.
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Let {ê1, . . . , ên+1} be the canonical base of Rn+1. Given A ⊂ Nn+1

finite, we define CA to be the subsemigroup of Nn+1 generated by A:

CA =
∑
α∈A

Nα,

thus the cone generated by CA is:

R+CA = R+A =
{∑

aiγi | ai ∈ R+, γi ∈ A
}
,

where R+ denote the set of non negative real numbers.

With this notation we state our main result:

Theorem 1.9 Let A = {log(g) | g ∈ {X1, . . . , Xn, FT}}. One has:

(a) If n = k and N = {ê1 − ên+1, . . . , ên − ên+1, ên+1}, then

R+CA =
∩
a∈N

H+
a

is the irreducible representation of R+CA.

(b) Assume n > k. For {i1, . . . , ir} ∈ Fn,r and 0 < r < k define the
vectors

ei1·...·ir = (1, . . . , 1,
i1
0, 1, . . . , 1,

i2
0, 1, . . . , 1,

ir
0, 1, . . . , 1,

n+1
r − k),

and define eϕ = (1, . . . , 1,−k) if r = 0. If

N = {ê1, . . . , ên+1, ei1·...·ir | {i1, . . . , ir} ∈ Fn,r, 0 ≤ r < k},

then

R+CA =
∩
α∈N

H+
a

is the irreducible representation of R+CA.

Proof: Case (a): In this case

A = {ê1, . . . , ên, ê1 + ê2 + · · ·+ ên+1}.

Clearly

n+ 1 = rank(MA) = dim R+CA,
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where MA is the matrix generated by the elements of A as rows. We
must show that Ha ∩ R+CA with a ∈ N are precisely the facets of the
cone R+CA.

Obviously R+CA ⊂ H+
a ∀a ∈ N , now let see that

dimHa ∩ R+CA = n ∀a ∈ N.

The case a = ên+1 is easy because {ê1, . . . , ên} ⊂ Hên+1
∩ R+CA,

and then Hên+1
∩ R+CA is a facet.

For the other cases take a = êi − ên+1. Let j ∈ {1, . . . , n}. Observe
that

⟨êi − ên+1, êj⟩ = δij ∀j
⟨êi − ên+1, ê1 + · · ·+ ên+1⟩ = 0,

then {ê1, . . . , êi−1, êi+1, . . . , ên, ên+1} ⊂ Hêi−ên+1
∩ R+CA and conse-

quently
Hêi−ên+1

∩ R+CA is a facet ∀i = 1, . . . n.

That they are all the facets follows by the fact that A has n + 1
linearly independent elements and the facets need n of them by Corol-
lary 1.6(b), hence there can only exist n+1 facets, and they were already
given.

Hence, if n = k then R+CA = ∩a∈NH+
a is the irreducible represen-

tation by Theorem 1.4, as wanted.
Case (b): Let

fj1·...·jk = (0, . . . , 0,
j1
1 , 0, . . . , 0,

j2
1 , 0, . . . , 0,

jk
1 , 0, . . . , 0,

n+1
1 )

for {j1, . . . , jk} ∈ Fn,k. In this case one has

A = {ê1, . . . , ên, fj1·...·jk | {j1, . . . , jk} ∈ Fn,k}.

First let us see that if

N = {ê1, . . . , ên+1, ei1·...·ir | {i1, . . . , ir} ∈ Fn,r, 0 ≤ r < k},

then Ha ∩ R+CA is a facet ∀a ∈ N .
Observe that we have:

⟨ei1·...·ir , fj1·...·jk⟩ = Card ({i1, . . . , ir} ∩ ({1, . . . , n} \ {j1, . . . , jk})) ,

where the left hand side of the equality is an inner product, then it
follows easily that R+CA ⊂ H+

a ∀a ∈ N .
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Now to see that Ha ∩ R+CA is a facet for any a in N we need only
show that they have the correct dimension n.

We have {ê1, . . . , ên} ⊂ Hên+1
∩ R+CA, hence Hên+1

∩ R+CA is a
facet. We also have {ê1, . . . , êi−1, êi+1, . . . ên} ⊂ Hêi ∩ R+CA, hence we
only need another vector linearly independent to the n−1 given vectors.
If we choose {j1, . . . , jk} ∈ Fn,k with i ̸∈ {j1, . . . , jk} (we can because
n > k), then fj1·...·jk ∈ Hêi ∩ R+CA and hence Hêi ∩ R+CA is a facet
∀i = 1, . . . , n.

Let us study now Hei1·...·ir
∩ R+CA with {i1, . . . , ir} ∈ Fn,r and

0 ≤ r < k, clearly we have that

{êi1 , . . . , êir} ⊂ Hei1·...·ir
∩ R+CA

so we only need to show another n−r vectors in Hei1·...·ir
∩R+CA which

are linearly independent to {êi1 , . . . , êir}. To choose those n− r linearly
independent vectors first observe that

dimL{fj1·...·jk | {j1, . . . , jk} ∈ Fn,k} = n

but we have that:

⟨ei1·...·ir , fj1·...·jk⟩ = 0 ⇐⇒ {i1, . . . , ir} ⊂ {j1, . . . , jk}

Observe that given a set {i1, . . . , ir} ∈ Fn,r we can choose {j1, . . . , jk}
in Fn,k satisfying {i1, . . . , ir} ⊂ {j1, . . . , jk} in (n−r

k−r ) distinct forms.
Consider the vector space

W = L({fj1·...·jk | {j1, . . . , jk} ∈ Fn,k and {i1, . . . , ir} ⊂ {j1, . . . , jk}.}

Since dimR(W ) ≥ n − r and (n−r
k−r ) ≥ n − r we can choose the n − r

linearly independent vectors needed, hence

Hei1 ·...·eir ∩ R+CA

is a facet for all {i1, . . . , ir} ∈ Fn,r with 0 ≤ r < k.

Finally let us see that the

(n+ 1) +
k−1∑
r=0

(
n

r
)

facets given are all the facets of the cone R+CA.
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Let F be a facet of the cone R+CA, hence there exist α1, . . . , αn ∈ A
linearly independent vectors and 0 ̸= b ∈ Rn+1 such that F = R+CA ∩
Hb, L{α1, . . . , αn} = Hb, and R+CA ⊂ H+

b .
Let see that exist a ∈ N such that L{α1, . . . , αn} = Ha and R+CA ⊂

H+
a .
We see this in three cases: Let B = {α1, . . . , αn}
1. If B = {ê1, . . . , ên} we can take a = ên+1.

2. If B ⊂ {fj1·...·jk | {j1, . . . , jk} ∈ Fn,k}, it is enough to take a = eϕ.

3. If B = {êi1 , . . . , êis , fj11 ·...·j1k , . . . , fjt1·...·jtk} with s, t > 0 (s+t = n).

Here 1 ≤ i1 < · · · < is ≤ n and {j11 , . . . , j1k}, . . . , {jt1, . . . , jtk} ∈ Fn,k. In
this final case we will show that {i1, . . . , is} ⊂ {jm1 , . . . , jmk } ∀m.

By contradiction, suppose that exist êip ∈ B and fjq1 ·...·j
q
k
∈ B with

ip ̸∈ {jq1 , . . . , j
q
k} note that there exists fβi

, with βi ∈ Fn,k, such that:

êip + fjq1 ·...·j
q
k
= êjqi + fβi

∀i = 1, . . . , k

Observe that ⟨êip + fjq1 ·...·j
q
k
, b⟩ = 0, then

⟨êjqi , b⟩ = −⟨fβi
, b⟩.

Hence ⟨êjqi , b⟩ = 0 because in the other case êjqi and fβi
would be in

opposite sides of Hb and that can not be. Therefore êjqi ∈ Hb ∀i =

1, . . . , k, consequently ⟨fjq1 ·...·jqk , b⟩ = bn+1 = 0.

Now as MB has rank n (MB is the matrix whose rows are the ele-
ments of B), then via row reduction MB takes the form [In, C], where
C is an n × 1 matrix. We have already proven that bn+1 = 0 and the
reduction shows that b1 = · · · = bn = 0, this is a contradiction because
b ̸= 0. Then

{i1, . . . , is} ⊂ {jm1 , . . . , jmk } ∀m = 1, . . . , t

from this we conclude that it is enough to take a = ei1·...·is then the facets
given are all the facets of the cone and the representation is irreducible.
2

Remark 1.10 Note that in Proposition 1.9 (b) the number of vectors
in N is equal to

n+ 1 +
k−1∑
r=0

(
n

r

)
.
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2 Computing the type and the a-invariant

At the end we illustrate with an example how to compute the a-invariant
and the type of R(I) using the equations of the cone. For use below we
recall that R(I) is a normal domain according to [8].

Definition 2.1 Let R be a polynomial ring over a field k and F a finite
set of monomials in R. A decomposition

k[F ] =
∞⊕
i=0

k[F ]i

of the k-vector space k[F ] is an admissible grading if k[F ] is a positively
graded k-algebra with respect to this decomposition and each compo-
nent k[F ]i has a finite k-basis consisting of monomials.

Theorem 2.2 (Danilov,Stanley) Let R = k[x1, . . . , xn] be a polyno-
mial ring over a field k and F a finite set of monomials in R. If k[F ]
is normal, then the canonical module ωk[F ] of k[F ], with respect to an
arbitrary admissible grading, can be expressed as

(1) ωk[F ] = ({xa| a ∈ NA ∩ ri(R+A)}),

where A = log(F ) and ri(R+A) denotes the relative interior of R+A.

The formula above represents the canonical module of k[F ] as an
ideal of k[F ] generated by monomials. For a comprehensive treatment
of the Danilov-Stanley formula see [3, Theorem 6.3.5].

Let K be a field and S a Cohen-Macaulay standard K-algebra. One
can represent S as S = R/I, where R is a polynomial ring with the
usual grading and I is a graded ideal. Recall that the type of S is the
minimum number of generators of the canonical module ωS of S, which
is also equal to the last Betti number in the minimal resolution of S as
an R-module. We also recall that the a-invariant of S is the degree (as
a rational function) of the Hilbert series of S, which is also equal to

a(S) = −min{i | (ωS)i ̸= 0}.

Thus it is clear that from the canonical module of S one can extract
important information about the resolution of S = R/I and about the
Hilbert series and the Hilbert function of S.
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Example 2.3 If n = 5 and k = 3, then we have 22 equations defining
the cone R+CA:

X1 +X2 +X3 +X4 +X5 − 3T ≥ 0 T ≥ 0
X1 +X2 +X3 +X4 − 2T ≥ 0 X1 ≥ 0
X1 +X2 +X3 +X5 − 2T ≥ 0 X2 ≥ 0
X1 +X2 +X4 +X5 − 2T ≥ 0 X3 ≥ 0
X1 +X3 +X4 +X5 − 2T ≥ 0 X4 ≥ 0
X2 +X3 +X4 +X5 − 2T ≥ 0 X5 ≥ 0
X1 +X2 +X3 − T ≥ 0
X1 +X2 +X4 − T ≥ 0
X1 +X2 +X5 − T ≥ 0
X1 +X3 +X4 − T ≥ 0
X1 +X3 +X5 − T ≥ 0
X1 +X4 +X5 − T ≥ 0
X2 +X3 +X4 − T ≥ 0
X2 +X3 +X5 − T ≥ 0
X2 +X4 +X5 − T ≥ 0
X3 +X4 +X5 − T ≥ 0

Note that the canonical module of R(I) is minimally generated by

{x1x2(x3x4x5T )} ∪ {xixjx1x2x3x4x5T 2| 1 ≤ i < j ≤ 5}.

This assertion can be readily verified by applying the Danilov-Stanley
formula and using that the relative interior of R+CA (which in our case
is the usual interior) is computed replacing ≥ by > in the above set of
inequalities (see Theorem 1.4). Since all those monomials have degree
3, the a-invariant of R(I) is −3 and type of R(I) is equal to 11.
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