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Shallow potential wells for the Schrödinger

equation and water waves ∗

Peter Zhevandrov 1 Anatoli Merzon

Abstract

We propose a simple method for constructing asymptotics of eigen-
functions for the Schrödinger equation with a shallow potential
well and its generalization to the problem of water waves trapped
by an underwater ridge.
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1 Introduction

It is well-known that the Schrödinger equation

(−∆+ U)Ψ = EΨ(1.1)

in the case when U describes a shallow potential well (i.e., U = εV (x),
V (x) ∈ C∞

0 (Rn), ε → 0) has exactly one eigenvalue E0 = −β2, β ∈ R,
below the essential spectrum [0,∞) in the case when

∫
Rn V (x)dx ≤ 0

and the dimension n of the configuration space is 1 or 2. This was estab-
lished for n = 1 and in the radially symmetric case for n = 2 already in
the famous textbook of Landau&Lifshitz [5] and later was demonstrated
in the general case in dimension 2 by Simon [7]. The methods used by
those authors are quite different and consist, in brief, in the following.
Landau&Lifshitz construct the asymptotics of the eigenfunction in the
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domains where V ≡ 0 and V ̸≡ 0 separately and then glue them to-
gether; thus, the asymptotics of the eigenfunction is nonuniform and
the method per se is applicable only in the radially symmetric case for
n = 2. The asymptotics of the eigenvalues is obtained from the gluing
conditions. On the other hand, Simon reduces the problem to an equa-
tion for the eigenvalues (secular equation) which he solves by means
of a Taylor expansion using the implicit function theorem; thus in his
approach the asymptotics of the eigenfunction does not appear at all.
Moreover, Simon’s method is by no means trivial because it uses, for
example, the theory of nuclear operators. Close results on the limiting
behavior of the resolvent can be found in [1].

Our goal here is to construct a uniform asymptotics of the eigen-
function in this situation assuming that

C1 ≥ ∥Ψ∥ ≥ C2 > 0 as ε → +0,(1.2)

where C1,2 do not depend on ε and the norm is that of L2(R). It turns
out that this construction is completely elementary when one passes to
the momentum representation. Moreover, our method is equally efficient
for the Schrödinger equation and the problem of water waves trapped
by a submarine ridge, which, as it is known in the folklore, is analogous
to the Schrödinger equation with a potential well. The corresponding
problem after the passage to dimensionless variables reads as follows:

∆Φ− Φ = 0, −h(x) < y < 0,
∂ϕ/∂n = 0, y = −h(x),

Φy = ω2Φ, y = 0;
(1.3)

here Φ ∈ H1(−h < y < 0, x ∈ R) is the velocity potential, h(x) is the
depth, x and y are the horizontal and vertical coordinates, respectively,
and ω is the frequency and at the same time the spectral parameter. We
assume that h(x) = h0 + εV (x), V (x) ∈ C∞

0 (R). From the results of [2]
it follows that for sufficiently small ε there exists exactly one eigenvalue
ω2 below the essential spectrum [tanhh0,∞) when

∫
R V (x) ≤ 0. The

asymptotics of this eigenvalue was obtained in [4] for the strict inequality
in the last formula and in a closely related but different asymptotic
regime (long-wave approximation).

We prove the following theorems. Denote

Ṽ (p) = (2π)−n/2
∫
Rn

e−ipxV (x)dx.
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Theorem 1.1 (Schrödinger equation, the case of dimension 1)
1) Let ∫

R
V (x)dx < 0.(1.4)

Then

Ψn(x) = µ3/2
n

∫
R
eipx

a0(p) + εa1(p) + . . .+ εnan(p)

p2 + µ2
n

dp,(1.5)

n = 0, 1, 2, . . ., is the asymptotics of the eigenfunction Ψ satisfying con-
dition (1.2) and belonging to the eigenvalue

E = −µ2
n +O(εn+5/2),(1.6)

i.e.
∥Ψ−Ψn∥ = O(εn+1/2) as ε → +0.(1.7)

Moreover,

µn = ε(β0 + εβ1 + . . .+ εnβn), β0 = −
√

π

2
Ṽ (0), a0(p) =

Ṽ (p)

Ṽ (0)
,

and the remaining values β1, . . . , βn and functions a1, . . . , an are deter-
mined from system (3.10-3.13)

2) Let
∫
R V (x)dx = 0. Then

Ψn(x) = µn

∫
R
eipx

a0(p) + εa1(p) + . . .+ εnan(p)

p2 + µ2
n

dp,(1.8)

n = 1, 2, . . ., is the asymptotics of the eigenfunction Ψ satisfying condi-
tion (1.2) and belonging to the eigenvalue E = −µ2

n + O(εn+4) in the
sense that

∥Ψ−Ψn∥ = O(εn).(1.9)

Moreover,

µn = ε2(β1 + εβ2 + . . .+ εnβn),

β1 =
1

2

∫
R

|V (t)|2

t2
dt,

β2 = − 1

2
√
2π

∫
R+i

∫
R+i

Ṽ (t− s)Ṽ (s)Ṽ (−t)

t2s2
dtds,

a0(p) = Ṽ (p),

a1(p) = −β2Ṽ (p)− i

√
π

2
Ṽ (p)Ṽ ′(0)−

√
2

π

∫
R+i

Ṽ (p− t)Ṽ (t)

t2
dt,

and the remaining values of β3, . . . , βn and the functions a2, . . . , an are
determined from system (3.10-3.13).
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Theorem 1.2 (Schrödinger equation, the case of dimension 2)
1) Let

∫
R2 V (x)dx < 0. Then

Ψ0(x) = µ1

∫
R2

eipx
a0(p)

p2 + µ2
1

dp,

where

µ1 = exp
1

ε(α0 + εα1)
,

α0 = Ṽ (0), α1 = − 1

2π

∫
−

R2

Ṽ (p)Ṽ (−p)

p2
dp,

a0(p) = Ṽ (p),

(1.10)

is the asymptotics of the eigenfunction belonging to the eigenvalue E =
−µ2

1 +O(µ2
1ε

2)) in the sense

∥Ψ−Ψ1∥ = O(ε).(1.11)

Here

∫
−f(p)

p2
dp =

∫
|p|<1

f(p)− f(0)

p2
dp+

∫
|p|>1

f(p)

p2
dp.

2) Let
∫
R2 V (x)dx = 0. Then

Ψ1(x) =
µ3

ε

∫
R2

eipx
a0(p) + εa1(p)

p2 + µ2
3

dp,(1.12)

where

µ3 = exp
1

ε(εα1 + ε2α2 + ε3α3)
,

α1, a0 are determined from (1.10),

α2 =
α1

(2π)2

∫
R4

Ṽ (−p)Ṽ (p− t)Ṽ (−p)a0(t)

p2t2
dpdt,

α3 =
α2

(2π)2

∫
R4

Ṽ (−p)Ṽ (p− t)Ṽ (−p)a0(t)

p2t2
dpdt

+
α1

(2π)2

∫
R2

Ṽ (p)

p2

(∫
−

R2

Ṽ (p− s)a1(s)

s2
ds

)
dp,

a1(p) = −α1

2π

∫
R2

Ṽ (p− t)a0(t)

t2
dt− α2a0(p),

is the asymptotics of the eigenfunction belonging to the eigenvalue E =
−µ2

3 +O(µ2
3ε) in the sense ∥Ψ−Ψ1∥ = O(ε).
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Remark. It is possible to construct corrections of any order to the
asymptotic eigenfunction Ψ1.

Theorem 1.3 1) Let
∫
R V (x)dx < 0. Then

Ψn(x) = µ3/2
n

∫
R
eipx

a0(p) + εa1(p) + . . .+ εnan(p)

coshh0[L(p) + µ2
n]

dp,

L(p) =
√
1 + p2 tanh(

√
1 + p2h0)− tanhh0,

(1.13)

is the asymptotics of the trapped wave Ψ satisfying condition (1.2) and
corresponding to the frequency

ω2 = tanhh0 − µ2
n +O(εn+5/2)(1.14)

in the sense (1.7). Moreover,

µn = ε(β0 + εβ1 + . . .+ εnβn),

β0 =
1√

2l cosh2 h0

∫
R
V (x)dx, a0(p) =

Ṽ (p)

Ṽ (0)
,

where l = tanhh0 − h0(tanhh0)
2 + h0,

(1.15)

and the remaining values β1, . . . , βn and functions a1, . . . , an are deter-
mined from the corresponding system.

2) Let
∫
R V (x)dx = 0. Then

Ψn(x) = µn

∫
R
eipx

a0(p) + εa1(p) + . . .+ εnan(p)

coshh0[L(p) + µ2
n]

dp(1.16)

is the asymptotics of the trapped wave Ψ satisfying condition (1.2) and
corresponding to the frequency

ω2 = tanhh0 − µ2
n +O(εn+4)(1.17)

in the sense (1.9). Moreover,

µn = ε2(β1 + εβ2 + . . .+ εnβn),

β1 =
1√

2l cosh2 h0

∫
R
|Ṽ (p)|2f(p)dp, a0(p) =

√
πṼ (p)

β1
√
l cosh2 h0

,

where f(p) is a positive function, f(p) =
τ2 − τ tanhh0 tanh(τh0)

τ tanh τh0 − tanhh0
, τ =√

1 + p2, l is defined from (1.15) and the remaining values β2, . . . , βn
and functions a1, . . . , an are determined from the corresponding system.



6 Peter Zhevandrov and Anatoli Merzon

2 Heuristic considerations

Before we go further, we would like to give some heuristic considerations
which explain the specific form of the asymptotics of the eigenfunctions
in Theorems 1.1-1.3.

We will present these arguments only in the simplest case of the
Schrödinger equation in dimension 1; their generalizations for other
cases are straightforward. Thus we would like to construct an approxi-
mate solution of

−Ψ′′ + εV (x)Ψ = EΨ.(2.1)

We already know (although we will also obtain this fact) that in the case∫
V (x)dx < 0 the energy E = O(ε2), E = −µ2, say. After performing

the Fourier transform in (2.1) we obtain

Ψ̃(p)(p2 + µ2) = −ε

∫
Ṽ (p− p′)Ψ̃(p′)dp′,(2.2)

where the tilde denotes the Fourier transform. Obviously, for x ̸∈
supp V (x) we have Ψ ∼ e−µ|x| with appropriate constants and the
Fourier transform of this function is a δ-type sequence. Hence the inte-
gral in the RHS of (2.2) is approximately equal to

−εCṼ (p)

with some normalization constant C. Therefore, by (2.2), Ψ̃(p) is ap-
proximately equal to

Const
A(p)

p2 + µ2
,(2.3)

where A(p) = Ṽ (p) is a function from S(R). The singular dependence
of the eigenfunction on ε is reflected in the denominator in (2.3). We
note that the structure of (2.3) is identical to formulas of Theorems 1.1-
1.3. Further, expanding A and µ in regular series in ε, calculating the
asymptotics of the integral in (2.2) and equating to zero the coefficients
of like powers of ε, one obtains the complete asymptotic series for Ψ.
The theorem on closeness of formal asymptotics to the exact solution
[6] provides the final step of the proof.

In conclusion, a few words about the water wave problem. As shown
in [9], problem (1.3) reduces to the following integral equation for the
function ϕ(x) = Φ|y=0:

ϕ̃(p)(L(p) + µ2) = ε

∫
γ
M(ϵ, p, p′)ϕ̃(p′)dp′,(2.4)
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where µ2 = tanhh0 − ω2, L(p) is defined in (1.13), γ is an appropriate
contour in the complex plane, and the function M(ε, p, p′) is analytic
in p, p′ along γ and linear in ε. Since L(p) ∼ Const p2 for small p, we
see that (2.4) is similar to (2.2) and our arguments are still valid if we
change the denominator in (2.3) to L(p) + µ2.

3 Sketch of the proof

In this section we will give a (rather detailed) sketch of the proof of the
first item of Theorem 1.1; the idea of the proof of the other statements
is similar.

Passing to the Fourier transform in (1.1) we obtain

(p2 −E)Ψ̃(p) = − ε√
2π

∫
R
Ṽ (p− p′)Ψ̃(p′)dp′.(3.1)

According to the scheme outlined in the previous section, we look for
the approximate solution of this equation in the form

Ψ̃n(p) = εBn
An(p)

p2 + ε2B2
n

,(3.2)

An(p) = a0(p) + εa1(p) + . . .+ εnan(p).

We assume that a0(p) ̸≡ 0 and

Bn = β0 + εβ1 + . . .+ εnβn.(3.3)

The approximate energy level is

En = −ε2B2
n.(3.4)

We will look for the solution satisfying the normalization conditions

a0(0) = 1, ak(0) = 0, k = 2, . . . , n.(3.5)

Our goal is to construct such values of β0, β1 . . . , βn and functions
a0(p), . . . , an(p) that Ψ̃n(p) satisfy equation (3.1) up to O(εn+2), where
∥O(εn+2)∥ ≤ Const εn+2.

Substituting (3.2) and (3.4) in (3.1) we obtain an equivalent equation

εBnAn(p) = −ε2Bn√
2π

∫
R

Ṽ (p− p′)An(p
′)dp′

p′2 + ε2B2
n

.(3.6)
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We will need an auxiliary lemma on the asymptotics expansions of
integrals of the form ∫

R

ϕ(p, t)

t2 + µ2
dt(3.7)

as µ → 0, where ϕ(p, t) is an entire function in t and belongs to S(Rt)
uniformly in p ∈ R. There are several methods of calculating such
asymptotics (see [3]); for our case the method based on the calculus
of residues turns out to be more convenient. Introduce the contour in
the complex plane C:

γ1 := (−∞,−1] ∪ {x+ iy : x2 + y2 = 1, |x| ≤ 1, y > 0} ∪ [1,+∞).

Lemma 3.1 Let ϕ(t) be an entire function and ϕ(t) ∈ S(R), t ∈ R.
Then as µ → 0

∫
R

ϕ(t)dt

t2 + µ2
=

n∑
k=0

αkµ
k
∫
γ1

ϕ(t)dt

tk+2
(3.8)

+µ2([n
2
]+1)

∫
γ1

ϕ(t)dt

t2([
n
2
]+1)(t2 − µ2)

+
π

µ
{

n∑
k=0

(iµ)k
ϕk(0)

k!

+
(iµ)n+1

n!

∫ 1

0
(1− t)nϕ(n+1)(tiµ)dt},

where αk = (1 + (−1)k)/2.

We do not give the proof of this lemma.

Let us continue the proof of Theorem 1.1. Expanding the left hand
side of (3.6) in ε, using (3.2) and (3.3), we obtain

εBnAn(p) =
n+1∑
k=1

εk(
k∑

l=0

βlak−l(p)) + εn+2Rn+2(ε, β̄, ā),(3.9)

where β̄ = (β0, β1, . . . , βn), ā = (a0, a1, . . . , an) and Rn+2(·, ·, ·) is a
polynomial in its arguments. Substituting in Lemma 3.1 µ = εBn,
ϕ(t) = εBnṼ (p − t)An(t) and calculating the coefficients of ε0, ε1, ε2

and also observing how β0, . . . , βn−1, an−2, an−1, an enter the coefficient
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of εn, we obtain the expansion of the integral in the right hand side of
equation (3.6):

εBn

∫
R

Ṽ (p− t)An(t)dt

t2 + ε2B2
n

= πa0(0)Ṽ (p)

−επ{β0[ia0(0)Ṽ ′(p)− ia′0(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
a0(t)dt]

−a1(0)Ṽ (p)}

−ε2π{β0[ia1(0)Ṽ ′(p)− ia′1(0)Ṽ (p))− 1

π

∫
γ1

Ṽ (p− t)

t2
a1(t)dt]

+β2
0 [
1

2
a0(0)Ṽ

′′(p)− a′0(0)Ṽ
′(p) +

1

2
a′′0(0)Ṽ (p)]

+β1[ia0(0)Ṽ
′(p)− ia′0(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
a0(t)dt]

−a2(0)Ṽ (p)}+ . . .

−εnπ{β0[ian−1(0)Ṽ
′(p)− ia′n−1(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
an−1(t)dt]

+β2
0 [
1

2
an−2(0)Ṽ

′′(p)− a′n−2(0)Ṽ
′(p) +

1

2
a′′n−2(0)Ṽ (p)]

+β1[ian−2(0)Ṽ
′(p)− ia′n−2(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
an−2(t)dt]

+ . . .

+βn−1[ia0(0)Ṽ
′(p)− ia′0(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
a0(t)dt]

−an(0)Ṽ (p)}

+εn+1Sn+1(p, ε, β̄, ā),

where

Sn+1(p, ε, β̄, ā) =

∫
γ1

Ṽ (p− t)An(t)Pn+1(t, ε, β̄)

tm(n)(t2 − ε2B2
n)

dt

+

∫ 1

0
Qn+1(t, ε, β̄)

∂n+1

∂τn+1

(
Ṽ (p− τ)An(τ)

)∣∣∣∣∣
τ=itεBn

dt,

Pn+1(·, ·, ·), Qn+1(·, ·, ·) are polynomials in their arguments, m(n) ∈ N
and m(n) → ∞ as n → ∞.

Multiplying the obtained expression by −ε/
√
2π and equating in

(3.6) the coefficients of εk, k = 1, . . . , n + 1, to zero, we obtain the
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system for βk, ak, k = 0, 1, . . . , n:

β0a0(p) = −
√

π

2
a0(0)Ṽ (p),(3.10)

β0a1(p) + β1a0(p)(3.11)

=

√
π

2
{β0[ia0(0)Ṽ ′(p)− ia′0(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
a0(t)dt]

−a1(0)Ṽ (p)},

β0a2(p) + β1a1(p) + β2a0(p)(3.12)

=

√
π

2
{β0[ia1(0)Ṽ ′(p)− ia′1(0)Ṽ (p))− 1

π

∫
γ1

Ṽ (p− t)

t2
a1(t)dt]

+β2
0 [
1

2
a0(0)Ṽ

′′(p)− a′0(0)Ṽ
′(p) +

1

2
a′′0(0)Ṽ (p)]

+β1[ia0(0)Ṽ
′(p)− ia′0(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
a0(t)dt]

−a2(0)Ṽ (p)},

· · ·

β0an(p) + β1an−1(p) + . . .+ βn−1a1(p) + βna0(p)(3.13)

=

√
π

2
{β0[ian−1(0)Ṽ

′(p)− ia′n−1(0)Ṽ (p))

− 1

π

∫
γ1

Ṽ (p− t)

t2
an−1(t)dt]

+β2
0 [
1

2
an−2(0)Ṽ

′′(p)− a′n−2(0)Ṽ
′(p) +

1

2
a′′n−2(0)Ṽ (p)]

+β1[ian−2(0)Ṽ
′(p)− ia′n−2(0)Ṽ (p)

− 1

π

∫
γ1

Ṽ (p− t)

t2
an−2(t)dt] + . . .

+βn−1[ia0(0)Ṽ
′(p)− ia′0(0)Ṽ (p)− 1

π

∫
γ1

Ṽ (p− t)

t2
a0(t)dt]

−an(0)Ṽ (p)}.
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Lemma 3.2 System (3.10)-(3.13) is uniquely solvable under conditions
(3.5) and its solutions a0, . . . , an belong to S(R).

Proof: Setting p = 0 in (3.10) and taking into account that by (1.4)
Ṽ (0) ̸= 0 we obtain

β0 = −
√

π

2
Ṽ (0).(3.14)

By the condition a0(0) = 1 we obtain from (3.11)

a0(p) =
Ṽ (p)

Ṽ (0)
.(3.15)

Set p = 0 in (3.11). By (3.15) and the condition a1(0) = 0 we obtain

β1 =
1

2

∫
γ1

Ṽ (t)Ṽ (−t)

t2
dt.(3.16)

Now let us find a1(p) from (3.11). Substituting (3.14), (3.15) and (3.16)
in (3.11), and taking into account the fact that a0(0) = 1, we obtain

a1(p) =
i

Ṽ (0)

√
π

2
[Ṽ ′(p)Ṽ (0)− Ṽ ′(0)Ṽ (p)](3.17)

− 1√
2πṼ (0)

∫
γ1

Ṽ (t)Ṽ (p− t)

t2
dt

+
Ṽ (p)√
2πṼ (0)2

∫
γ1

Ṽ (t)Ṽ (−t)

t2
dt.

We see that indeed a1(0) = 0. Proceeding analogously, we obtain βn
and an assuming that β0, β1, . . . , βn−1, a0, a1, . . . , an−1 are known and
that ak(0) = 0, k = 2, . . . , n− 1. We look for an(p) such that an(0) = 0.
Setting p = 0 in (3.13) and taking into account the fact that a0(0) = 1,
we obtain

βn =

√
π

2
{β0[−ia′n−1(0)Ṽ (0)− 1

π

∫
γ1

Ṽ (−t)an−1(t)

t2
dt] + . . .

+βn−1[iṼ
′(0)− ia′0(0)Ṽ (0)− 1

π

∫
γ1

Ṽ (p− t)a0(t)

t2
dt]};

that is, βn is uniquely determined. Substituting the last formula and
β0, . . . , βn−1, a0, . . . , an−1 in (3.13) we see that an(p) is uniquely deter-
mined since β0 ̸= 0. It is not hard to see that indeed an(0) = 0.
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Thus we are left with the proof of the fact that all the ak ∈ S(R).
This is obvious for k = 0. For the function a1 this follows from (3.17),
the Peetre inequality [8]

(1 + |θ|2)s ≤ 2|s|(1 + |θ − θ′|2)|s|(1 + |θ′|2)s

for all θ, s ∈ R, and the condition Ṽ (p−t) ∈ S(R+). The corresponding
assertions for ak, k > 1, are proved by induction. Lemma 3.2 is proved.
2

Let us complete the proof of Theorem 1.1. From Lemma 3.5 and
(3.10-3.13) it follows that Bn and An expressed in terms of values
β0, . . . , βn and functions a0 . . . , an by means of (3.2), (3.3) solve equa-
tion (3.6) up to O(εn+2). This means that the function Ψ̃n(p) from
(3.2) solves equation (3.1) up to O(εn+2). Using Lemma 1.3 from [6] we
obtain after normalization (1.2) the estimate (1.6). Also from Lemma
1.4 of the same book we obtain the estimate (1.7) for the eigenfunction
Ψ. The first item of Theorem 1.1 is proved. 2

Acknowledgement

The authors express their deep gratitude for partial financial support
to CONACYT and Coordinación de Investigación Cient́ıfica (UMSNH).

P. Zhevandrov
Institute of Mathematics,
UNAM (campus Morelia),
Morelia, Mich., MEXICO.
pzhevand@zeus.ccu.umich.mx

A. Merzon
Institute of Physics and Mathematics,
University of Michoacán,
Morelia, Mich., MEXICO.
anatoli@ginette.ifm.umich.mx

References

[1] Albeverio, S.; Gesztesy, F.; Høegh-Krohn R.; Holden, H., Solvable
Models in Quantum Mechanics, Springer, 1988.

[2] Bonnet-Ben Dhia, A.-S.; Joly, P., Mathematical analysis of guided
water waves, SIAM J. Appl. Math. 53 (1993), 1507-1550.

[3] Fedoryuk, M. V., Asymptotics: integrals and series, Nauka,
Moscow, 1987.

[4] Grimshaw, R., Edge waves: a long-wave theory for oceans of finite
depth, J. Fluid Mech. 62 (1974), 775-791.



Shallow potential wells 13

[5] Landau, L. D.; Lifschitz, E. M., Quantum Mechanics, Pergamon,
London, 1958, sec. 45.

[6] Maslov, V. P., Asymptotic Methods and Theory of Perturbations,
Nauka, Moscow, 1988.

[7] Simon, P., The bound state of weakly coupled Schrödinger oper-
ators in one and two-dimensions, Ann. Phys. (NY) 97 (1976),
279-288.

[8] Treves, F., Introduction to Pseudodifferential and Fourier Integral
Operators, v.I, Plenum Press, New-York and London, 1982.

[9] Zhevandrov, P., Edge waves on a gently sloping beach: uniform
asymptotics, J. Fluid Mech. 233 (1991), 483-493.


