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Multiobjective Markov Control Processes: a
Linear Programming Approach ∗

Onésimo Hernández-Lerma Rosario Romera

Abstract

This paper studies discrete-time multiobjective Markov control
processes (MCPs) on Borel spaces and unbounded costs. Un-
der mild assumptions, it shows the existence of Pareto policies,
which, as in multiobjective optimization problems, are also char-
acterized as optimal policies for a certain class of single-objective
(or “scalar”) MCPs. A similar result is obtained for strong Pareto
policies, which are Pareto policies whose cost vector is the closest,
in the Euclidean norm, to the virtual minimum. To obtain these
results, the basic idea is to transform the multiobjective MCP into
an equivalent multiobjective measure problem (MMP). In addition,
MMP is restated as a primal multiobjective linear program and it
is shown that solving the dual program is in fact the same as solv-
ing the scalarized MCPs. A multiobjective LQ example illustrates
the main results.
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1 Introduction

In a standard optimal control problem there is a decision–maker or con-
troller that wishes to optimize a single objective function. Thus, for
instance, in a production control problem it is tacitly assumed that
the given objective function somehow aggregates several different costs
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(manufacturing costs, holding costs, distribution costs, etc.) and possi-
bly several income sources (for example, sales, investments, and so on).
However, there are situations in which it is convenient, or perhaps even
necessary, to optimize separately these functions and the controller is
then led to consider a multiobjective problem of the form (say): “mini-
mize” the cost vector

V (π) := (V1(π), . . . , Vq(π)) ∈ IRq

over the class of all admissible policies π (see Section 2 for details). In
particular, if π∗ minimizes V (π) in the sense of Pareto, then π∗ is said
to be a Pareto policy. On the other hand, letting

(1.1) V ∗
i := inf

π
Vi(π) for i = 1, . . . , q,

and defining the virtual minimum V ∗ := (V ∗
1 , . . . , V ∗

q ), an important
issue is to find strong Pareto policies, namely, Pareto policies π∗ whose
cost vector V (π∗) is the “closest” (e.g. in the usual Euclidean norm) to
V ∗. This is the control–theoretic analogue of a goal programming prob-
lem [36] in which the goal or target is V ∗. (We might of course consider
other “goals”, but V ∗ is the most common.) Still another key problem
occurs when the individual costs V1(π), . . . , Vq(π) are ranked in order of
“importance”. In this case, a lexicographically (or hierarchically) opti-
mal policy turns out to be a particular Pareto policy.

Contributions of this paper. In this paper we study discrete-
time multiobjective Markov control processes (MCPs) on Borel spaces
and unbounded costs. The main problems we are concerned with are the
existence and characterization of both Pareto and strong Pareto policies,
and also of weak and proper Pareto policies (Definition 2.5). Actually,
the existence of Pareto, weak Pareto, and proper Pareto policies is very
easy because it can be obtained via the usual scalarization approach,
in which the multiobjective MCP is reduced to a single–objective (or
standard or scalar) MCP with a “weighted” objective function of the
form

(1.2) λ·V (π) := λ1V1(π) + · · · + λqVq(π)

for some vectors λ in the nonnegative orthant IRq
+. However, the exis-

tence of strong Pareto policies as well as the characterization problem
are more complicated, and, to the best of our knowledge, this is the
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first paper dealing with these issues for general MCPs. (See below for
related literature.)

To study the latter problems we propose here to use so–called occu-
pation measures to transform the multiobjective MCP into an equivalent
multiobjective measure problem (MMP) on a suitable space of measures.
The original multiobjective control problem is thus greatly simplified be-
cause the MMP turns out to have a linear objective (vector) function
defined on a convex set of measures. This implies that, for instance, the
existence of strong Pareto policies essentially reduces to find the distance
from the virtual minimum V ∗ to a convex set. Similarly, the charac-
terization of Pareto policies (known as the “theorem of equivalence” in
Pareto optimality [4]) can be obtained by standard convex–analytic ar-
guments. Moreover, introducing suitable vector spaces, we reformulate
the MMP as a primal multiobjective linear program and this allows us
to show that solving the dual linear program is in fact the same as solv-
ing the scalar problem (1.2) using dynamic programming. As far as we
can tell, this interpretation of the scalarization approach for multiob-
jective control problems as the dual of a multiobjective linear program
has never been reported before in the literature. We should also note
that to obtain the latter duality result, as well as the characterization
of Pareto policies (Theorem 3.4, below) without our MMP approach
would be extremely difficult — perhaps impossible — to obtain.

Related literature. Vector optimization problems can be traced
back to (at least) the late 19th century; see e.g. [4, 31] for earlier
references. However, according to the excellent survey by Salukvadze
[35, Chapter 1], in control theory they were first introduced by Zadeh
[46] in 1963. The scalarization and the hierarchical (or lexicographical)
approaches were introduced by Reid and Citron [34] and Waltz [43],
respectively.

Concerning multiobjective MCPs, the existence and characteriza-
tion of Pareto policies have been studied by many authors but for par-
ticular classes of MCPs, for instance with a countable state space [10-
12,14,23,24,28,40-42,44,45], or in Borel spaces but with bounded costs
[29, 37, 39]. It should be noted that for some of these classes of MCPs
one can obtain very interesting results. For example, if the state and
action spaces are both finite, the set of Pareto policies can be completely
characterized using Theorem 1 of Arrow et al. [3], as in [14]. Moreover,
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for finite state spaces, there are multiobjective versions of value itera-
tion [23, 24, 45] and of policy iteration [12, 41, 42], which, as they are
computationally appealing, it would be interesting to investigate if they
can be extended to MCPs in uncountable spaces. On the other hand,
some papers [12, 23, 24, 29] deal with a vector–minimization problem
more general than ours in the sense that instead of the convex cone IRq

+,
they work with the partial order induced by an arbitrary pointed convex
cone in IRq. But it turns out that they restrict the control problem to
some subclass of policies (e.g. deterministic stationary), whereas here
we work with the set of all (randomized, history–dependent) policies. At
any rate, extending our MMP approach to the case of a general pointed
convex cone seems to be a purely notational problem.

Organization of the paper. The remainder of the paper is orga-
nized as follows. In Section 2 we introduce the multiobjective MCP we
are concerned with, as well as the precise notions of Pareto optimality.
We consider a vector of discounted cost criteria but in Section 8 we
briefly explain, among other things, how our results can be translated
to average costs. In Section 3 we state our hypotheses (Assumption
3.1) and the so-called “theorem of equivalence” in Pareto optimality
[4]. In fact, we state this theorem in two parts, Theorem 3.2(a) and
(the converse) Theorem 3.4, because the proof of the latter requires the
MMP, which is introduced until Section 4. On the other hand, Theorem
3.2(a) is the easy part of the “theorem of equivalence” and it directly
yields the existence of Pareto policies. Section 3 also includes Exam-
ple 3.5 on a multiobjective LQ (Linear system with Quadratic costs)
MCP in which explicit Pareto policies can be calculated. In Section 5
we introduce the virtual minimum V ∗ for our multiobjective MCP, and
show the existence of strong Pareto policies. We also extend a result of
Tanaka [37] that can be very useful to compute strong Pareto policies;
see Theorem 5.2(b). This fact is illustrated in Example 5.7, which is
a continuation of the LQ Example 3.5. Section 6 presents the multi-
objective Linear Programming (LP) formulation of the multiobjective
MCP. The idea (as for scalar and constrained MCPs [16,17,20,21]) is to
introduce suitable dual pairs of vector spaces in which the MMP (4.7)
can be formulated as a multiobjective linear program. The multiobjec-
tive LP formulation is borrowed from Balbás and Heras [7]. Section 7
contains the proof of Theorem 3.4, and, finally, in Section 8 we briefly
mention some connections between our multiobjective MCPand con-
strained MCPs, multiobjective problems with average cost criteria, and
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multiobjective problems with “mixed” average and discounted criteria.

Remark 1.1.(Notation) If S is a Borel space (that is, a Borel subset
of a complete and separable metric space), we denote its Borel σ-algebra
by B(S). If S and T are Borel spaces, then a stochastic kernel on S given
T is a function (t, B) #→ q(B|t) from T ×B(S) to the interval [0, 1] such
that q(B|· ) is a measurable function on T for each fixed B ∈ B(S), and
q(· |t) is a probability measure on B(S) for each fixed t.

2 Multiobjective MCPs

A multiobjective Markov control model can be represented as

(2.1) (X, A, IK, Q, (c1, . . . , cq), δ, γ0),

where X and A are Borel spaces that stand for the state space and the
control (or action) set, respectively. We also have the constraint set IK,
a Borel subset of X×A, and which is assumed to contain the graph of a
measurable map from X to A (this ensures that the set IF in Definition
2.1, below, is nonempty). For each x ∈ X, the x-section in IK, namely

A(x) := {a ∈ A|(x, a) ∈ IK},

is a (nonempty) Borel subset of A whose elements are the admissible
control actions in the state x. The transition law Q is a stochastic kernel
on X given IK, whereas

(2.2) c := (c1, . . . , cq) : IK → IRq

is a vector function whose components are used to define the different
cost criteria. Finally, δ ∈ (0, 1) is a given discount factor, and γ0 is the
initial distribution, a probability measure on X.

If q = 1, then (2.1) will be referred to as a “scalar” (or “standard”)
Markov control model.

Definition 2.1.Φ denotes the family of stochastic kernels ϕ on A given
X that satisfy the constraint ϕ(A(x)|x) = 1 for all x ∈ X, and IF stands
for the class of measurable functions f from X to A such that f(x) ∈
A(x) for all x ∈ X.
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Let H0 := X, and Hn := IKn × X for n = 1, 2, . . .. A control policy
is a sequence π = {πn, n = 0, 1, . . .} of stochastic kernels πn on A given
Hn that satisfy the condition

(2.3) πn(A(xn)|hn) = 1

for each “history” hn = (x0, a0, . . . , xn−1, an−1, xn) in Hn and n =
0, 1, . . .. We denote by Π the set of control policies. A control pol-
icy π = {πn} is said to be randomized stationary if there exists ϕ ∈ Φ
such that πn(· |hn) = ϕ(· |xn) for every history hn ∈ Hn and n = 0, 1, . . ..
The set of such policies will be identified with the family Φ in Definition
2.1. On the other hand, π = {πn} is called deterministic stationary if
there exists f ∈ IF such that πn(· |hn) is the Dirac measure concentrated
at f(xn) for all hn ∈ Hn and n = 0, 1, . . .. We shall identify IF with the
collection of deterministic stationary policies.

The multiobjective MCP. Consider the control model (2.1) and
let (Ω,F) be the (canonical) measurable space consisting of the sam-
ple space Ω := (X × A)∞, and the corresponding product σ-algebra F .
Then, for each policy π ∈ Π, there is a probability measure P π

γ0
and

a stochastic process {(xt, at), t = 0, 1, . . .} defined on Ω in a canonical
way, where xt and at represent the state and the control variables at
time t (t = 0, 1, . . .) when using the policy π. The expectation operator
with respect to P π

γ0
is denoted by Eπ

γ0
.

For each i = 1, . . . , q and π ∈ Π, consider the δ-discounted cost

(2.4) Vi(π, γ0) := (1 − δ)Eπ
γ0

[ ∞∑

t=0

δtci(xt, at)
]
,

which will be well defined under our Assumption 3.1 below. Now let
V (π, γ0) ∈ IRq be the cost vector

(2.5) V (π, γ0) := (V1(π, γ0), . . . , Vq(π, γ0)).

The multiobjective control problem we are concerned with is to find a
policy π∗ that “minimizes” V (· , γ0) in the sense of Pareto. To state this
in a precise form we first introduce some notation and terminology.

Pareto optimality. We consider IRq with the usual partial order;
that is, for q-vectors u and v, the inequality u ≤ v means that ui ≤ vi
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for all i = 1, . . . , q. We also have

u < v ⇔ u ≤ v and u )= v;

u * v ⇔ ui < vi for all i = 1, . . . , q.

A sequence {uk} ⊂ IRq converging to u is said to converge in the di-
rection v ∈ IRq if there is a sequence of positive numbers tk such that
tk → 0 and

(2.6) lim
k→∞

(uk − u)/tk = v.

Let Γ be a subset of IRq. The tangent cone to Γ at u ∈ Γ, denoted
T(Γ, u), is the set of all the directions v ∈ IRq in which some sequence
in Γ converges to u. There are several equivalent definitions of tangent
cone; see e.g. [5]. In particular, if Γ is a convex set, then ([5],p. 64)

(2.7) T(Γ, u) = closure [
⋃

t>0

1
t
(Γ − u) ].

Note that Γ − u is contained in T(Γ, u).

Definition 2.2. Let Γ be a subset of IRq. A vector u∗ in Γ is said to
be

(a) a Pareto point of Γ if there is no u ∈ Γ such that u < u∗;

(b) a weak Pareto point of Γ if there is no u ∈ Γ such that u << u∗;

(c) a proper Pareto point of Γ if u∗ is a Pareto point and, in addition,
the tangent cone to Γ at u∗ does not contain vectors v < 0.

Let Par(Γ), WPar(Γ) and PPar(Γ) denote, respectively, the set of
Pareto points of Γ, the set of weak Pareto points, and the set of proper
Pareto points. Then

(2.8) PPar(Γ) ⊂ Par(Γ) ⊂ WPar(Γ).

Moreover, if Γ is a closed convex set, then (by Theorem 1 in [3]) Par(Γ)
is contained in the closure of PPar(Γ).
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Example 2.3.Let Γ ⊂ IR2 be as in Figure 1. Then WPar(Γ) coincides
with the boundary of Γ, whereas Par(Γ) is the subset of the boundary
consisting of the vector (u∗

1,m2) and the vectors whose first coordinate
is in the half–closed interval (u∗

1,m1]. Finally, the proper Pareto points
of Γ are the vectors in Par(Γ) with first coordinate in the open inter-
val (u∗

1,m1). Also note that the vector (u∗
1,m2) is the lexicographical

minimum of Γ in the sense of the following definition.

Definition 2.4. If u and v are vectors in IRq, u is said to be lexicogra-
phically smaller than v (in symbols: u ≤L v) if the first nonzero term
of the sequence v1 − u1, . . . , vq − uq is positive. Moreover, a vector û
in Γ ⊂ IRq is called the lexicographical minimum of Γ if û ≤L u for all
u ∈ Γ.

A direct application of Definitions 2.2 and 2.4 shows that the lexi-
cographical minimum is a Pareto point.

Pareto policies. The above concepts can be extended to multi-
objective MCPs in the same way as it is done for vector optimization
problems [27, 31, 36]. First, as the initial distribution γ0 is fixed, we shall
simplify the notation by dropping γ0 from expressions such as (2.4) and
(2.5). For instance, we shall write Vi(π, γ0) simply as Vi(π).
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Definition 2.5.Let Γ(Π) be the set of cost vectors in (2.5), i.e.

(2.9) Γ(Π) := {V (π)|π ∈ Π}.

A policy π∗ ∈ Π is said to be

(a) a Pareto policy (respectively, a weak Pareto policy or a proper
Pareto policy) if its corresponding cost vector V (π∗) is in Par(Γ(Π))
(respectively, in WPar(Γ(Π)) or in PPar(Γ(Π)));

(b) lexicographically optimal if V (π∗) is the lexicographical minimum
of Γ(Π).

In other words, π∗ ∈ Π is a Pareto policy (or Pareto optimal) if
there is no policy π such that V (π) < V (π∗), and similarly for weak or
proper Pareto policies.

The set Γ(Π) in (2.9) is called the performance set (also known as the
objective or achievable set) of the multiobjective MCP. An example in
which Γ(Π) is similar to the set Γ in Figure 1 is given in [18], where it is
shown that the so–called cµ–rule for priority queues is lexicographically
optimal — hence a nonproper Pareto policy. In fact, there are many
examples of lexicographically optimal policies, including Blackwell opti-
mal policies [26], bias optimal policies [21, 25], and average cost optimal
policies that in addition minimize the cost variance [22].

Remark 2.6.(a) To find lexicographically optimal policies we may pro-
ceed as follows. Let Π0 := Π, and for i = 1, . . . , q let

(2.10) V̂i := inf{Vi(π)|π ∈ Πi−1},

and, finally, let Πi be the set of policies in Πi−1 that attain the minimum
in (2.10). Then, assuming that the sets Πi are nonempty, Πq consists
of the lexicographically optimal policies. Moreover, if π̂ is in Πq, then
its cost vector V (π̂) = (V̂1, . . . , V̂q) is of course the lexicographical min-
imum of Γ(Π).

(b) The procedure in (2.10) is also valid for q = ∞, that is, for infi-
nite cost vectors V (π), as in Blackwell optimality [26], for instance.

(c) If for some i = 1, . . . , q the set Πi in (a) consists of a single policy
π̂i, then π̂i is the unique lexicographically optimal policy.

(d) As in (2.8), PPar(Γ(Π)) ⊂ Par(Γ(Π)) ⊂ WPar(Γ(Π)).
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3 Pareto optimal policies

To study the existence and characterization of Pareto policies, in the
remainder of the paper we impose the following assumption.

Assumption 3.1.The multiobjective Markov control model (2.1) sat-
isfies that:

(a) The constraint set IK ⊂ X × A is closed.

(b) The functions ci are nonnegative and lower semicontinuous and,
moreover, at least one of them, say c1, is inf-compact, which means
that for each r ∈ IR, the level set

(3.1) Kr := {(x, a) ∈ IK|c1(x, a) ≤ r}

is compact.

(c) The transition law Q is weakly continuous; that is, denoting by
Cb(S) the space of continuous bounded functions on a topological
space S, the map

(3.2) (x, a) #→
∫

X
h(y)Q(dy|x, a) is in Cb(IK) for each h ∈ Cb(X).

(d) There exists a policy π ∈ Π such that Vi(π) < ∞ for all i =
1, . . . , q. (Recall that Vi(π, γ0) ≡ Vi(π).)

Observe that Assumption 3.1 is not restrictive at all. In fact, it holds
in most applications to queueing systems, productions models, etc. In
particular, Assumption 3.1(c) holds if the state process {xt} evolves
according to a discrete-time equation of the form

xt+1 = G(xt, at, ξt), t = 0, 1, . . . ,

where the ξt are i.i.d. disturbances independent of the initial state x0,
and G(x, a, s) is a given measurable function, continuous in (x, a) ∈ IK
for each s. This class of systems includes the LQ problem in Examples
3.5 and 5.7, below.

The existence problem. To study the existence of Pareto policies
we shall first follow the well-known “scalarization” approach. Thus,
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given a q–vector λ > 0 we consider the scalar (or real-valued) cost-per-
stage function

(3.3) cλ(x, a) := λ· c(x, a) =
q∑

i=1

λici(x, a),

and, as in (2.4), we consider a δ-discounted cost V λ(π) ≡ V λ(π, γ0) with

(3.4) V λ(π) := (1 − δ)Eπ
γ0

[ ∞∑

t=0

δtcλ(xt, at)
]
.

Using (3.3) and (2.5) we may write V λ(π) as

(3.5) V λ(π) = λ·V (π) =
q∑

i=1

λiVi(π).

It is clear that minimizing V λ(· ) over Π is equivalent to minimize V λ(· )
multiplied by a positive constant. Hence, occasionally we shall assume
that the vector λ in (3.3)-(3.5) belongs to the set

(3.6) Λ := {λ ∈ IRq
++|

q∑

i=1

λi = 1},

where IRq
++ is the set of vectors λ . 0. We may then state an existence

result as follows. (Observe that part (d) in Theorem 3.2 gives a little
more than the existence of Pareto policies because, in fact, it ensures
the existence of deterministic stationary Pareto policies.)

Theorem 3.2. Suppose that for some q–vector λ = (λ1, . . . ,λq) > 0
there is a policy π∗ ∈ Π that is optimal for the scalar criterion (3.4),
i.e.

(3.7) V λ(π∗) ≤ V λ(π) ∀ π ∈ Π.

Then:

(a) π∗ is a weak Pareto policy.

(b) If in addition

(3.8) V λ(π∗) < V λ(π) ∀ π ∈ Π with V (π) )= V (π∗),

then π∗ is a Pareto policy.
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(c) If λ . 0 (in particular if λ is in Λ), then π∗ is a proper Pareto
policy.

(d) If λ1 > 0, then there exists a deterministic stationary policy fλ ∈
IF that is a weak Pareto policy; if, moreover, π∗ ≡ fλ satisfies
(3.8), then fλ is a Pareto policy. Finally, if λ . 0, then fλ is a
proper Pareto policy.

Proof: (a) Suppose that π∗ is not a weak Pareto policy. Then there
exists a policy π ∈ Π such that V (π) * V (π∗) and, therefore, as λ > 0,
we get V λ(π) < V λ(π∗), which contradicts (3.7).

(b) Similarly, if π∗ is not a Pareto policy, there exists π ∈ Π such
that V (π) < V (π∗). Hence V λ(π) ≤ V λ(π∗), which contradicts (3.8).

(c) If π∗ is not a proper Pareto policy, then the tangent cone to Γ(Π)
at V (π∗), i.e. T (Γ(Π), V (π∗)), contains a vector v < 0. Therefore, there
exists a sequence {πk} in Π and a sequence {tk} of positive numbers
such that

lim
k→∞

(V (πk) − V (π∗))/tk = v.

As λ . 0, we have λ · v < 0. It follows that for all k sufficiently large

λ · (V (πk) − V (π∗)) = V λ(πk) − V λ(π∗) < 0,

which contradicts (3.7).

(d) Suppose that λ1 > 0. Then, by Assumption 3.1(b), λ1 · c1(x, a)
is nonnegative and inf–compact, and, therefore (by (3.3) and the first
part of Assumption 3.1(b)), so is cλ. The latter fact together with
Assumption 3.1(a),(c),(d) implies the existence of a deterministic sta-
tionary policy π∗ ≡ fλ that satisfies (3.7); see e.g. [15] or Theorem 4.2.3
in [20]. Hence, by part (a), fλ is a weak Pareto policy. The remaining
statements in (d) are proved similarly. !

To obtain the converse of parts (a),(b),(c) in Theorem 3.2 we will
use a special reformulation (introduced in Section 4) of the original
multiobjective MCP. This requires to restrict the “admissible” policies
to the following set.

Definition 3.3.Π0 denotes the set of policies π ∈ Π for which Vi(π) <
∞ for all i = 1, . . . , q.
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By our Assumption 3.1(d), the set Π0 is nonempty. The following
theorem is proved in Section 7.

Theorem 3.4. Let π∗ be a policy in Π0. If π∗ is a weak Pareto policy,
then there exists a q–vector λ > 0 for which (3.7) holds. If π∗ is a
proper Pareto policy, then λ . 0.

As a Pareto policy is weak Pareto (recall (2.8)), Theorem 3.4 tacitly
includes the case in which π∗ is a nonproper Pareto policy. Thus Theo-
rem 3.4 is a (slight) extension of the so–called “theorem of equivalence”
in Pareto optimality [4]. Finally, observe that Theorems 3.4 and 3.2
indeed characterize weak and proper Pareto policies because they yield
that, for instance, π∗ ∈ Π0 is a proper Pareto policy if and only if π∗

minimizes the scalar criterion (3.4) for some q–vector λ . 0.

The following example illustrates Theorem 3.2.

Example 3.5. Let α and β be nonzero real numbers and consider the
scalar linear system

(3.9) xt+1 = αxt + βat + ξt for t = 0, 1, . . . ,

with state and control spaces X = A = IR. The disturbances ξt are i.i.d.
random variables, independent of the initial state x0, and such that

(3.10) E(ξ0) = 0 and E(ξ2
0) =: σ2 < ∞.

For i = 1, . . . , q, let si and ri be strictly positive numbers, and let ci(x, a)
be the quadratic cost

(3.11) ci(x, a) := six
2 + ria

2.

Then, for each q–vector λ > 0, the scalar problem (3.3)-(3.5) corre-
sponds to the linear system (3.9) with quadratic cost

(3.12) cλ(x, a) = (λ· s)x2 + (λ· r)a2

with s := (s1, . . . , sq) and r := (r1, . . . , rq). Moreover, for each i =
1, . . . , q, let zi be the unique positive solution of the Riccati equation

(3.13) δβ2z2 + (ri − riα
2δ − siβ

2δ)z − siri = 0.
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Now replace si and ri with the coefficients λ· s and λ· r in (3.12), re-
spectively, and let z(λ) be the corresponding unique positive solution
of (3.13). Then, as is well-known (see, for instance, p. 72 in [20]), the
optimal control policy fλ ∈ IF for the scalar problem is

(3.14) fλ(x) = −
[
λ· r + δβ2z(λ)

]−1
αβδz(λ)x ∀x ∈ X,

and, moreover, for each initial state x0 = x, the optimal cost function
is

(3.15) V λ(fλ, x) = z(λ)
[
(1 − δ)x2 + δσ2

]
∀x ∈ X,

with σ2 as in (3.10). Therefore, assuming that the initial distribution
γ0 satisfies that

(3.16) γ0 :=
∫

x2γ0(dx) < ∞,

the optimal cost V λ(fλ) ≡ V λ(fλ, γ0) in the left-hand side of (3.7) is
obtained by integrating both sides of (3.15) with respect to γ0. This
yields

(3.17) V λ(fλ) = k(γ0)z(λ), with k(γ0) := (1 − δ)γ0 + δσ2.

By Theorem 3.2, fλ is a proper Pareto policy if λ . 0, and a weak
Pareto policy if λ > 0. In particular, let e(i) be the unit vector with
coordinates ei(i) = 1 and ej(i) = 0 for j )= i. Then replacing λ in (3.17)
with e(i) we obtain the “partial” minimum cost in (1.1), i.e.

(3.18) V ∗
i := inf

π
Vi(π) = Vi(fe(i)) = k(γ0)zi ∀ i = 1, . . . , q.

This gives the virtual minimum V ∗ = (V ∗
1 , . . . , V ∗

q ), which is illustrated
in Figure 2 for the case q = 2. In that figure, the Pareto set Par(Γ(Π)) is
the part of the boundary of Γ(Π) with first coordinate in [V ∗

1 , V1(fe(2))].
On the other hand, by the uniqueness of optimal policies for LQ (linear–
quadratic) systems, it follows from Remark 2.6(a),(c) that fe(1) is the
lexicographically optimal policy, whose corresponding cost vector V̂ :=
V (fe(1)) has coordinates V̂i = Vi(fe(1)) for all i = 1, . . . , q, i.e.

(3.19) V̂ = (V ∗
1 , V2(fe(1)), . . . , Vq(fe(1))).
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K(W))

V2*

V *1 V1 (f V1 (/)

V2(/)

e

V2(fe(1 )

( 2 ) )

Figure 2. See (3.18), (3.19).

Remark 3.6.Consider a single, or scalar, LQ system with cost c(x, a) =
sx2 + ra2; see (3.11). If the coefficients s and r are both positive,
then an optimal policy for this problem can be interpreted as a proper
Pareto policy for a two–dimensional multiobjective control problem with
individual costs c1(x, a) := x2 and c2(x, a) := a2. In fact, a similar
interpretation is valid for any scalar control problem with additive costs,
say of the form

c(x, a) = r1c1(x, a) + · · · + rqcq(x, a)

with positive coefficients r1, . . . , rq. See [19] for details.

4 A multiobjective measure problem

In this section we reformulate the multiobjective MCP as an equiva-
lent multiobjective measure problem (MMP) on a suitable vector space
of measures. This reformulation greatly simplifies the proofs of some
results and, in addition, it can be used to write the multiobjective MCP
as a multiobjective linear program (see Section 6).

Occupation measures. For each policy π ∈ Π, let µπ ≡ µπ
γ0

be the
corresponding δ-discount expected occupation measure, which is defined
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as

(4.1) µπ(D) := (1 − δ)
∞∑

t=0

δtP π
γ0

[
(xt, at) ∈ D

]
∀D ∈ B(X × A).

This is a probability measure on X × A that, by (2.3), is concentrated
on IK. Moreover, if π is in Π0 (see Definition 3.3), then a standard
argument (see, for instance, Remark 9.4.2(b) in [21, p. 85]) yields that
Vi(π) in (2.4) can be written as

(4.2) Vi(π) = 〈µπ, ci〉 :=
∫

IK
ci dµπ (i = 1, . . . , q).

To state other properties of occupation measures we shall use the fol-
lowing notation: if µ is a finite signed measure on X×A, we denote its
variation by |µ| = µ+ + µ−, and its marginal (or projection) on X by µ̂,
that is,

µ̂(B) := µ(B × A) ∀B ∈ B(X).

We also introduce the following sets of measures.

Definition 4.1.M(IK) denotes the vector space of finite signed mea-
sures on X × A, concentrated on IK, and such that

(4.3) 〈|µ|, ci〉 =
∫

ci d|µ| < ∞ ∀i = 1, . . . , q.

Further, M+(IK) ⊂ M(IK) stands for the convex cone of nonnegative
measures in M(IK), and Mδ(IK) ⊂ M+(IK) is the subfamily of nonneg-
ative measures for which

(4.4) µ̂(B) = (1 − δ)γ0(B) + δ

∫

IK
Q(B|x, a)µ(d(x, a)) ∀B ∈ B(X).

As µ̂(X) = µ(X × A), it is evident from (4.4) that

(4.5) Mδ(IK) is a convex set of probability measures.

It also turns out that Mδ(IK) coincides with the family of occupation
measures in (4.1). More precisely (as in [15, pp. 386-387] or [20, Theo-
rem 6.3.7], for instance), we have the following result in which Π0 is as
in Definition 3.3.

Lemma 4.2. If π is a policy in Π0, then its occupation measure µπ is in
Mδ(IK). Conversely, if µ is in Mδ(IK), then µ is the occupation measure
of a policy in Π0 (that is, there exists π ∈ Π0 such that µπ = µ).
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For µ ∈ Mδ(IK) and c as in (2.2), let

(4.6) 〈µ, c〉 := (〈µ, c1〉, . . . , 〈µ, cq〉).

Now consider the following multiobjective measure problem (MMP):

(4.7) minimize {〈µ, c〉|µ ∈ Mδ(IK)}.

By (4.2) and Lemma 4.2, MMP is equivalent to our original multiob-
jective MCP if we restrict ourselves — which we do in the rest of this
paper — to the set

(4.8) Γ(Π0) := {V (π)|π ∈ Π0}

in lieu of the set Γ(Π) in (2.9). On the other hand, from (4.2), (4.5) and
Lemma 4.2 we may immediately conclude the following.

Lemma 4.3. Γ(Π0) can be expressed as

(4.9) Γ(Π0) = {〈µ, c〉|µ ∈ Mδ(IK)},

which is a convex subset of IRq
+.

Actually, the convexity of Γ(Π0) is a well–known fact (see e.g. [10,
33, 38]). However, we wish to emphasize here that this convexity is a
straightforward, trivial, consequence of the MMP formulation: see (4.6)
and (4.5). This illustrates the advantage of using the MMP instead of
the original multiobjective MCP.

In the following section we use the MMP (4.7) to show the existence
of “strong” Pareto policies, and in Section 7 we use it to prove Theorem
3.4.

5 Strong Pareto optimality

For each i = 1, . . . , q, let V ∗
i ≡ V ∗

i (γ0) be the optimal δ-discounted cost
of the scalar MCP with cost-per-stage ci(x, a), that is,

V ∗
i := inf

π
Vi(π) (with Vi(π) as in (2.4)).

The q-vector V ∗ := (V ∗
1 , . . . , V ∗

q ) is called the virtual minimum for the
multiobjective MCP. (V ∗ is also known as the utopian or the ideal or
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the shadow minimum.) Let ‖· ‖ be the Euclidean norm in IRq, and let
ρ : Π0 → IR+ be the map defined as

(5.1) ρ(π) := ‖V (π) − V ∗‖ for π ∈ Π0.

This is a utility function (or a strongly monotonically increasing function
[27]) for the multiobjective MCP in the sense that if π and π′ are such
that V (π) < V (π′), then ρ(π) < ρ(π′). (In (5.1) we took the Euclidean
norm to fix ideas, but in fact we may take any norm in IRq. See Remark
5.6.)

Definition 5.1.A policy π∗ ∈ Π0 is said to be strong Pareto optimal
(or a strong Pareto policy) if it minimizes the function ρ, that is,

(5.2) ρ(π∗) = inf{ρ(π)|π ∈ Π0} =: ρ∗.

As ρ is a utility function, it is clear that a strong Pareto policy is
Pareto optimal, but of course the converse is not true.

Let Γ(Π0) be as in (4.8). For each λ ∈ IRq, let

(5.3) ∆(λ) := inf{λ· (V (π) − V ∗)|π ∈ Π0}

be the so-called support function of Γ(Π0) − V ∗ at λ. Moreover, let
S ⊂ IRq be the closed unit sphere centered at the origin, and let S1 be
its boundary, i.e.,

S := {λ | ‖λ‖ ≤ 1} and S1 := {λ | ‖λ‖ = 1}

Theorem 5.2. Suppose that ρ∗ > 0. Then:

(a) There exists a strong Pareto policy;

(b) There exists a vector λ∗ ∈ S1 ∩ IRq
++ such that

(5.4) ρ∗ = ∆(λ∗) = max
λ∈S

∆(λ)

and, moreover, for any strong Pareto policy π∗, the vector λ∗ is
“aligned” with V (π∗) − V ∗, i.e.

(5.5) λ∗· (V (π∗) − V ∗) = ‖λ∗‖ ‖V (π∗) − V ∗‖ = ρ∗.
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For completeness and ease of reference, before proving Theorem 5.2
we state some well-known technical facts. The following lemma can be
obtained from the definition of inf–compactness and Prohorov’s Theo-
rem [8].

Lemma 5.3. Let Y be a metric space and M a family of probability
measures on Y . If there exists a nonnegative and inf-compact function
v on Y such that

sup{〈µ, v〉|µ ∈ M} < ∞,

then M is relatively compact, that is, for each sequence {µn} in M there
is a probability measure µ on Y and a subsequence {µm} of {µn} such
that µm converges weakly to µ in the sense that

(5.6) 〈µm, u〉 → 〈µ, u〉 ∀u ∈ Cb(Y ).

Lemma 5.4. Let Y be a metric space, and v : Y → IR lower semicon-
tinuous and bounded below. If µm and µ are probability measures on Y
and µm converges weakly to µ (that is, as in (5.6)), then

(5.7) lim inf
m→∞

〈µm, v〉 ≥ 〈µ, v〉.

Lemma 5.4 is well known: see, for instance, statement (12.3.37) in
[21, p. 225].

Lemma 5.5. The set Mδ(IK) (in Definition 4.1) is closed with respect
to the topology of weak convergence.

Proof: Let {µm} be a sequence in Mδ(IK) such that µm converges weakly
to µ. Choose an arbitrary function h in Cb(X). By (3.2),

∫
h(y)Q(dy|· )

is in Cb(IK), and, therefore, by the weak convergence of µm to µ, we get
∫ ∫

h(y)Q(dy|x, a)µm(d(x, a)) →
∫ ∫

h(y)Q(dy|x, a)µ(d(x, a)).

Similarly, the marginals µ̂m converge weakly to the marginal µ̂. Hence,
as each µm satisfies (4.4), so does the limiting probability measure µ.
Thus, to complete the proof that µ is in Mδ(IK), it only remains to show
that (4.3) holds for µ. This, however, follows from Assumption 3.1(b)
and Lemma 5.4, which together yield

lim inf
m→∞

〈µm, ci〉 ≥ 〈µ, ci〉 ∀i = 1, . . . , q.
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This implies that µ satisfies (4.3). !

Proof of Theorem 5.2. (a) By (4.6) and Lemma 4.2, we may express
ρ∗ in (5.2) as

ρ∗ = inf{‖ 〈µ, c〉 − V ∗ ‖ |µ ∈ Mδ(IK)}.

Now let {µn} be a sequence in Mδ(IK) such that, as n → ∞,

(5.8) ‖ 〈µn, c〉 − V ∗ ‖ ↓ ρ∗.

Choose an arbitrary ε > 0 and let n(ε) be such that

‖ 〈µn, c〉 − V ∗ ‖≤ ρ∗ + ε ∀ n ≥ n(ε).

This implies the existence of a constant k such that 〈µn, ci〉 ≤ k for all
n ≥ n(ε) and i = 1, . . . , q. In particular,

(5.9) 〈µn, c1〉 ≤ k ∀n ≥ n(ε).

Thus, as c1 is inf-compact (Assumption 3.1(b)), (5.9) and Lemma 5.3
imply the existence of a subsequence {µm} of {µn} and a probability
measure µ∗ on X×A, concentrated on IK (by Assumption 3.1(a)), such
that µm converges weakly to µ∗. By Lemma 5.5, µ∗ is in Mδ(IK), and,
by (5.7) and (5.8),

(5.10) ‖〈µ∗, c〉 − V ∗‖ = ρ∗.

Finally, let π∗ ∈ Π0 be the policy associated to µ∗, and use (4.2) to
rewrite (5.10) as ‖V (π∗) − V ∗‖ = ρ∗. This completes the proof of part
(a).

(b) If π∗ ∈ Π0 is strong Pareto optimal, then the support function
in (5.3) becomes

∆(λ) = λ· (V (π∗) − V ∗),

and the vector λ∗ := (V (π∗) − V ∗)/‖V (π∗) − V ∗‖ satisfies (5.4) and
(5.5). !

Remark 5.6.By the convexity of Γ(Π0) (Lemma 4.3), finding a strong
Pareto policy essentially reduces to the problem of finding the distance
from the virtual minimum V ∗ to the convex set Γ(Π0). This yields, in
particular, that part (b) in Theorem 5.2 can be seen as a special case
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of the “Minimum Norm Duality” in Luenberger [32, p. 136, Theorem
1]. Hence, as the latter result is true for an arbitrary normed linear
space, in (5.1) we may take any norm instead of the Euclidean one. For
instance, one could take a weighted -p–norm, with 1 ≤ p ≤ ∞, which is
very common in vector optimization [27, 31, 36].

Example 5.7. (Example 3.5 continued). Consider again the LQ prob-
lem (3.9)–(3.11). For each i = 1, . . . , q, let V ∗

i = k(γ0)zi be the partial
minimum in (3.18), where zi is the unique positive solution of (3.13).
Thus, letting z∗ := (z1, . . . , zq), the LQ problem’s virtual minimum
V ∗ = (V ∗

1 , . . . , V ∗
q ) becomes

(5.11) V ∗ = k(γ0)z∗.

Moreover, to find a strong Pareto policy we may proceed as follows.
From (5.11) and (3.17), the support function in (5.3) is given by

∆(λ) = k(γ0)[z(λ) − λ· z∗] ∀λ ∈ IRq.

Now let λ∗ ∈ S1 ∩ IRq
++ be as in Theorem 5.2(b). Then a strong Pareto

policy is obtained from (3.14) taking λ = λ∗, and the cost vector “clos-
est” to V ∗ is given by (3.17) with λ = λ∗.

6 The multiobjective LP approach

In this section we follow Balbás and Heras [7] to formulate our mul-
tiobjective MCP as a multiobjective linear program. This requires to
introduce two dual pairs (M(IK), F (IK)) and (M(X), F (X)) of vector
spaces, which are essentially the same as those defined in [20, §6.3] or
[21, §12.3]. (The reader may consult the latter references or [2] for gen-
eral facts on infinite-dimensional scalar linear programming (LP).)

Define w : IK → IR++ as

(6.1) w(x, a) := 1 + c1(x, a) + · · · + cq(x, a).

(More generally, our approach may use any nonnegative “weight” func-
tion w(x, a) provided that it is bounded away from zero and that it
majorizes all of the functions ci(x, a). Thus, instead of w in (6.1) we
could use, for instance, w := ε+max(c1, . . . , cq) for any ε > 0.) Observe
that (4.3) is equivalent to

(6.2)
∫

w d|µ| < ∞.
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Therefore, the vector space M(IK) can be described as the space of finite
signed measures µ on X × A, concentrated on IK, and for which (6.2)
holds.

Now let F (IK) be the vector space of real-valued measurable func-
tions v on IK such that

(6.3) ‖v‖w := sup
(x,a)

|v(x, a)|/w(x, a) < ∞.

From (6.1) it follows that each of the cost functions ci belongs to F (IK),
and, on the other hand, (M(IK), F (IK)) is a dual pair of vector spaces
with respect to the bilinear form

(6.4) 〈µ, v〉 :=
∫

v dµ for µ ∈ M(IK), v ∈ F (IK).

We also consider another dual pair (M(X), F (X)) defined exactly as
above but replacing IK and w with X and

w0(x) := inf
a∈A(x)

w(x, a) ∀x ∈ X,

respectively.

Weak topologies. Henceforth we consider M(IK) to be endowed
with the weak toplogy σ(M(IK), F (IK)), which will be referred to as the
σ-weak topology. Thus a sequence (or a net) {µn} σ-converges to µ if

(6.5) 〈µn, v〉 → 〈µ, v〉 ∀v ∈ F (IK).

This should not be confused with the “weak convergence” (5.6), which is
restricted to continuous and bounded functions. (Note that, of course,
Cb(IK) ⊂ F (IK).) The vector spaces F (IK),M(IK), and F (X) are also
endowed with the corresponding σ-weak topologies.

In the remainder of this section we suppose that Assumption 3.1 and
the following Assumption 6.1 are both satisfied.

Assumption 6.1.
∫
X w0(y)Q(dy|· ) is in F (IK); that is, for some con-

stant k, ∫

X
w0(y)Q(dy|x, a) ≤ kw(x, a) ∀(x, a) ∈ IK.
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Assumptions 6.1 and 3.1(d) ensure, in particular, that the initial
distribution γ0 is in the space M(X).

Let L : M(IK) → M(X) be the linear map µ #→ Lµ defined as

(6.6) (Lµ)(B) := µ̂(B) − δ

∫

IK
Q(B|x, a)µ(d(x, a)).

The adjoint L∗ : F (X) → F (IK) of L, that is, the linear map L∗ for
which

(6.7) 〈Lµ, u〉 = 〈µ,L∗u〉 ∀µ ∈ M(IK), u ∈ F (X),

is given by

(6.8) (L∗u)(x, a) = u(x) − δ

∫

X
u(y)Q(dy|x, a) ∀(x, a) ∈ IK.

By Assumption 6.1, L∗ indeed maps F (X) into F (IK), which is equiva-
lent to say that L is σ–weakly continuous.

Multiobjective LP. For each µ in M(IK), let 〈µ, c〉 be as in (4.6)
and consider the primal program (PP):

minimize 〈µ, c〉
subject to: Lµ = (1 − δ)γ0, µ ∈ M+(IK).(6.9)

Comparing (PP) with the MMP (4.7) we can see that they are essentially
the same but the former has a little more “structure”: the constraint
(4.4) has been rewritten in (6.9) using the σ-weakly continuous map L.

A feasible solution µ∗ for (PP) is said to be optimal if there is no
feasible µ such that 〈µ, c〉 < 〈µ∗, c〉. If such an optimal solution ex-
ists, then (PP) is said to be solvable. Thus, from Theorem 3.2(d) and
the equivalence of (4.7) and the multiobjective MCP, we conclude the
following.

Corollary 6.2. (PP) is solvable.

To state the dual program we need some notation. Let F (X)q be the
vector space of IRq-valued functions u = (u1, . . . , uq) with ui ∈ F (X)
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for all i = 1, . . . , q. For u ∈ F (X)q and λ ∈ IRq, let uλ ∈ F (X) and
L∗u ∈ F (IK)q be the functions given by

(6.10) uλ := λ·u =
q∑

i=1

λiui, and L∗u := (L∗u1, . . . , L
∗uq),

respectively. Moreover, if ν is in M(X), we write

〈ν, u〉 := (〈ν, u1〉, . . . , 〈ν, uq〉).

Then, from [7, p. 380], we can see that the dual program (DP) of (PP)
is as follows:

(DP) maximize 〈(1 − δ)γ0, u〉
subject to: λ·L∗u ≤ λ· c with u ∈ F (X)q, for some λ ∈ IRq

++.(6.11)

In fact, if we let

Fλ := {u ∈ F (X)q|λ· 〈Lµ, u〉 ≤ λ· 〈µ, c〉 ∀µ ∈ M+(X)}

and use (6.7), it then follows that the dual constraint (6.11) can be
expressed as in [7], namely:

u is in Fλ for some λ ∈ IRq
++.

On the other hand, using (6.10) and (6.8) we can write (6.11) in the
more explicit form

(6.12) uλ(x) ≤ cλ(x, a) + δ

∫

X
uλ(y)Q(dy|x, a) ∀(x, a) ∈ IK,

for some λ ∈ IRq
++. The latter inequality yields

(6.13) uλ(x) ≤ min
a∈A(x)

[
cλ(x, a) + δ

∫

X
uλ(y)Q(dy|x, a)

]
∀x ∈ X,

which, when the equality holds, that is,

(6.14) uλ(x) = min
a∈A(x)

[
cλ(x, a) + δ

∫

X
uλ(y)Q(dy|x, a)

]
∀x ∈ X.

becomes the dynamic programming equation (d.p.e.) for the scalar MCP
with cost function (1 − δ)−1V λ(π, x), where V λ(π, x) is the function in
(3.5) when the initial state is x0 = x.
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Remark 6.3.Let V λ
∗ (x) := infπ V λ(π, x) for all x ∈ X. Then (1 −

δ)−1V λ
∗ (x) is the (pointwise) minimal solution of the d.p.e. (6.14).

Moreover, if V λ
∗ is in F (X) and uλ satisfies (6.12)-(6.13), then well-

known arguments (see [20, Lemma 4.2.7], for instance) give that

(6.15) uλ(x) ≤ (1 − δ)−1V λ
∗ (x) ∀x ∈ X,

and for this reason uλ is said to be a subsolution of the d.p.e. (6.14).
Note that (6.15) yields

(6.16) 〈(1 − δ)γ0, u
λ〉 ≤ 〈γ0, V

λ
∗ 〉.

Therefore (by the equivalence of (6.11) and (6.12)), we can see the dual
program (DP) as the problem of maximizing integrals as in the left-
hand side of (6.16) over the family of subsolutions uλ of the d.p.e. for
a class of scalar MCPs parameterized by λ ∈ IRq

++. Thus, the mul-
tiobjective LP formulation gives us a “primal-dual” interpretation of
the relation between our original multiobjective MCP and the scalar
MCPs in (3.3)-(3.5). This interpretation can also be obtained from the
“complementary slackness” property in the following proposition from
[7] adapted to our current situation.

Proposition 6.4. Let µ be a feasible solution for (PP) and u a feasible
solution for (DP). Then

(a) (Weak duality.) We never have 〈(1 − δ)γ0, u〉 > 〈µ, c〉.

(b) (Complementary slackness.) If in addition

(6.17) 〈µ, c − L∗u〉 = 0,

then µ is optimal for (PP) and u is optimal for (DP).

Proof: Part (a) is straightforward, and in turn (a) implies (b) because,
by (6.7) and (6.9), we can write (6.17) as

〈(1 − δ)γ0, u〉 = 〈µ, c〉. !

Now, to obtain the primal-dual interpretation mentioned in the last
part of Remark 6.3, it suffices to note that (6.17) is equivalent to

(6.18) 〈µ, cλ − L∗uλ〉 = 0 ∀λ ∈ IRq
++.
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In fact, by (6.8), we can recognize the integrand cλ − L∗uλ in (6.18) as
the difference between the two sides of (6.12). Therefore, we can obtain
a solution (µ, uλ) for (6.18) in the obvious manner: choose an arbitrary
λ ∈ IRq

++ and let V λ
∗ be as in Remark 6.3. Let

uλ
∗(x) := (1 − δ)−1V λ

∗ (x) ∀x ∈ X.

Furthermore (as in the proof of Theorem 3.2(d)), let f∗ ∈ IF be a sta-
tionary policy such that f∗(x) ∈ A(x) attains the minimum in the d.p.e.
(6.14) for all x ∈ X, and, finally, let µ∗ be the occupation measure as-
sociated with f∗. Then, by their very definitions, it follows that µ∗ is
feasible for (PP), uλ

∗ is feasible for (DP), and

〈µ∗, c
λ − L∗uλ

∗ 〉 = 0.

7 Proof of Theorem 3.4

Let us first suppose that π∗ ∈ Π0 is a proper Pareto policy. Let µ∗ ∈
Mδ(IK) be the occupation measure corresponding to π∗ (see (4.1)). By
(4.2), (4.6) and Lemma 4.2, to prove Theorem 3.4 it suffices to show the
existence of a q–vector λ . 0 such that

λ · 〈µ∗, c〉 ≤ λ · 〈µ, c〉 ∀ µ ∈ Mδ(IK)

(cf. (3.7)) or, equivalently,

(7.1) 〈µ − µ∗, cλ〉 ≥ 0 ∀ µ ∈ Mδ(IK),

with cλ as in (3.3). With this in mind, consider the set Γ(Π0) in (4.9),
and let T0 := T (Γ(Π0), 〈µ∗, c〉) be the tangent cone to Γ(Π0) at 〈µ∗, c〉.
As Γ(Π0) is convex (Lemma 4.3), we have

(7.2) Γ(Π0) − 〈µ∗, c〉 ⊂ T0.

(Recall (2.7).) Let B be the set of q–vectors u < 0 such that

(7.3)
q∑

i=1

ui = −1,

and note that T0 − B is a convex set that does not contain the vector
zero. Therefore, by a well–known separation theorem (e.g. [5, p. 30],
[32, p. 133], there exists a vector λ )= 0 such that

λ · (v − u) > 0 ∀ v ∈ T0, u ∈ B.
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In particular, by (7.2),

(7.4) λ · (〈µ, c〉 − 〈µ∗, c〉) > λ · u ∀ µ ∈ Mδ(IK), u ∈ B,

and taking µ = µ∗ we obtain that λ · u < 0 for all u ∈ B. Therefore,
choosing an arbitrary i ∈ {1, . . . , q} and letting u ∈ B be the vector with
components ui = −1 and uj = 0 for j )= i, we conclude that λi > 0;
hence, as i ∈ {1, . . . , q} was arbitrary, λ . 0. Thus to complete the
proof it only remains to verify that µ∗ and λ satisfy (7.1), so that µ∗

indeed minimizes λ · 〈µ, c〉 = 〈µ, cλ〉. Suppose that this is not the case
and let µ ∈ Mδ(IK) be such that 〈µ, cλ〉 < 〈µ∗, cλ〉, i.e.

(7.5) 〈µ − µ∗, cλ〉 < 0.

For each r ≥ 0, let vr be the vector in T0 defined as

vr := r(〈µ, c〉 − 〈µ∗, c〉) = r〈µ − µ∗, c〉.

Then, by (7.5), λ · vr = r〈µ − µ∗, cλ〉 → −∞ as r → ∞, which con-
tradicts (7.4). This completes the proof of Theorem 3.4 when π∗ is a
proper Pareto policy.

Let us now suppose that π∗ is a weak Pareto policy and let µ∗ be
the corresponding occupation measure. Then 〈µ∗, c〉 is a weak Pareto
point of Γ(Π0), i.e. there is no µ ∈ Mδ(IK) such that 〈µ, c〉 * 〈µ∗, c〉.
Let

C1 := {u ∈ IRq|u * 〈µ∗, c〉},

C2 := {u ∈ IRq|u ≥ 〈µ, c〉 for some µ ∈ Mδ(IK)}.

Then C1 and C2 are disjoint convex sets, and in addition C1 is open.
Therefore, by the separation theorem in [32, p. 133, Theorem 3], there
is a q–vector λ )= 0 and a real number α such that

(7.6) λ · u < α ≤ λ · v ∀ u ∈ C1, v ∈ C2.

Moreover, the vector 〈µ∗, c〉 is in the intersection of C2 and the closure
of C1, which yields that α = λ · 〈µ∗, c〉. Hence the first inequality in
(7.6) gives

λ · (〈µ∗, c〉 − w) ≤ λ · 〈µ∗, c〉 ∀ w ∈ IRq
+,

which implies that λ · w ≥ 0 for all w ≥ 0, and so λ ≥ 0. Thus λ > 0
because λ )= 0. Finally, by the definition of C2 and the second inequality
in (7.6), we obtain that λ · 〈µ∗, c〉 ≤ λ · 〈µ, c〉 for all µ ∈ Mδ(IK), which
concludes the proof of Theorem 3.4. !
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8 Further remarks

In this final section we briefly discuss some connections between our
results and other problems for MCPs.

Constrained MCPs. For each i = 1, . . . , q, let Vi(π) = Vi(π, γ0)
be as in (2.4), and let k2, . . . , kq be q − 1 nonnegative given numbers.
Then the problem

minimize V1(π)
subject to: Vi(π) ≤ ki for i = 2, . . . , q; π ∈ Π,(8.1)

is called a constrained MCP. In this case, a policy π for which (8.1)
holds and, in addition, V1(π) < ∞ is said to be feasible for the con-
strained MCP. Let us suppose that the set Πco ⊂ Π of feasible policies
is nonempty. Then, under Assumption 3.1, there is an optimal pol-
icy π∗ ∈ Πco for the constrained MCP (see e.g. [16]), and under an
additional Slater–like condition, π∗ is also a Pareto policy for the mul-
tiobjective MCP in Section 2 above; see [30], for instance.

For additional results on constrained MCPs or for MCPs with weighted
criteria, see, for instance, [1, 10, 11, 14, 16, 17, 28, 30, 33, 38].

Average cost. Let us rewrite (2.4) as

(8.2) Vi(π, γ0) = lim sup
n→∞

Eπ
γ0

[ n−1∑

t=0

δtci(xt, at)
]
/

n−1∑

t=0

δt.

This is, of course, the same as (2.4) if 0 < δ < 1, whereas if δ = 1 we
get the average cost (AC) criterion

(8.3) Ji(π, γ0) = lim sup
n→∞

1
n

Eπ
γ0

[ n−1∑

t=0

ci(xt, at)
]
.

It is easily verified that all of the results in Sections 3, 4 and 5 remain
valid when δ = 1, with some obvious changes. For example, the set
M1(IK) in Definition 4.1 (and (4.5)) is the set of probability measures µ
on X × A, concentrated on IK, and such that (as in (4.4))

(8.4) µ̂(B) =
∫

IK
Q(B|x, a)µ(d(x, a)).
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Similarly, by (8.4), the constraint equation (6.9) in the multiobjective
LP formulation becomes

(8.5) L1µ = 0, µ ∈ M+(IK),

where L1 is given by (6.6) with δ = 1. Finally, as in the discounted
case (8.1), we can also consider constrained MCPs with the AC crite-
rion and obtain an optimal policy for the constrained problem, which is
a Pareto policy for the multiobjective MCP. For details see [17], where
a probability measure µ for which (8.5) holds is called stable.

Mixed average-discounted criteria. The average cost case in
(8.3)-(8.5) can be used to study multiobjective MCPs with cost vectors
of the form

(J1(π, γ0), . . . , Jr(π, γ0), Vr+1(π, γ0), . . . , Vq(π, γ0))

in which the Ji(π, γ0) are ACs as in (8.3), and the Vj(π, γ0) are dis-
counted costs as in (8.2) with possibly different discount factors δj (j =
r + 1, . . . , q). The key fact that allows us to do this is that the original
multiobjective MCP is reduced to solving a Pareto problem of the form
(4.7) but on the set M1(IK) of stable probability measures. The corre-
sponding technical details are essentially the same as in Remarks 2.2(c)
and 3.7(b) of [17].

Further research: the balance space approach. In this pa-
per we used two main approaches to analyze a multiobjective MCP: the
scalarization approach (to study the problem of existence of Pareto poli-
cies) and the MMP approach (to study the characterization of Pareto
policies). In fact, the former approach is the “dual” of the latter in a
precise sense (see Section 6). On the other hand, there is a nonscalar-
ized approach called the balance space approach introduced by Galperin
[13] for vector optimization problems. This approach, in addition to
allowing an interesting economic interpretation of the so–called “bal-
ance points”, has proved to be very effective from the computational
viewpoint and also to study key issues, such as the sensitivity of vec-
tor minimization problems [6]. It might be worth investigating if this
effectiveness also holds for multiobjective control problems.
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