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Tutte uniqueness of locally grid graphs ∗

D. Garijo A. Márquez M.P. Revuelta

Abstract

A graph is said to be locally grid if the structure around each of
its vertices is a 3× 3 grid. As a follow up of the research initiated
in [4] and [3] we prove that most locally grid graphs are uniquely
determined by their Tutte polynomial.
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1 Introduction

Given a graph G, the Tutte polynomial of G is a two-variable polynomial
T (G;x, y), which contains considerable information on G [1]. A graph
G is said to be Tutte unique if T (G;x, y) = T (H;x, y) implies G ∼= H
for every other graph H. In Section 2 we prove that, locally grid graphs
are Tutte unique.

Given a fixed graph H, a connected graph G is said to be locally
H if for every vertex x the subgraph induced on the set of neighbors
of x is isomorphic to H. For example, if P is the Petersen graph, then
there are three locally P graphs [2]. The locally grid condition is slightly
different since it involves not only a vertex and its neighbors, but also
four vertices at distance two. From now on, all graphs considered have
no isolated vertices.

We first recall some definitions and results about locally grid graphs
from [4].
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Let N(x) be the set of neighbors of a vertex x. We say that a
4−regular connected graph G is a locally grid graph if for each vertex x
there exists an ordering x1, x2, x3, x4 of N(x) and four different vertices
y1, y2, y3, y4, such that, taking the indices modulo 4,

N(xi) ∩ N(xi+1) = {x, yi}

N(xi) ∩ N(xi+2) = {x}

and there are no more adjacencies among {x, x1, . . . , x4, y1, . . . , y4} than
those required by these conditions (Figure 1).

Figure 1: Locally Grid Structure

Locally grid graphs are simple, two-connected, triangle-free, and
each vertex belongs to exactly four cycles of length 4.

Let H = Pp×Pq be the p×q grid, where Pl is a path with l vertices.
Label the vertices of H with the elements of the abelian group Zp × Zq

in the natural way. Vertices of degree four already have the locally grid
property, hence we have to add edges between vertices of degree two and
three in order to obtain a locally grid graph. A complete classification
of locally grid graphs is given in [4], and they fall into the following
families. In all the Figures, the vertices of the graph are represented by
dots and two points with the same label correspond to points that are
identified in the surface.

The Torus T δ
p,q with p ≥ 5, 0 ≤ δ ≤ p/2, δ + q ≥ 5 if q ≥ 4,

δ + q ≥ 6 if q = 2, 3 or 4 ≤ δ < p/2 with δ (= p/3, p/4 if q = 1.
(Figure 2a)

E(T δ
p,q) = E(H) ∪ {{(i, 0), (i + δ, q − 1)}, 0 ≤ i ≤ p − 1}

∪ {{(0, j), (p − 1, j)}, 0 ≤ j ≤ q − 1}.

For δ = 0 we obtain the toroidal grid Cp ×Cq, in this case we will write
Tp,q. We can assume that δ ≤ p/2.

The Klein Bottle K1
p,q with p ≥ 5, p odd, q ≥ 5. (Figure 2b)

E(K1
p,q) = E(H) ∪ {{(j, 0), (p − j − 1, q − 1)}, 0 ≤ j ≤ p − 1}

∪ {{(0, j), (p − 1, j)}, 0 ≤ j ≤ q − 1}.
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Figure 2: a) T 2
7,5 b) K1

7,5

The Klein Bottle K0
p,q with p ≥ 6, p even, q ≥ 4 (Figure 3a).

E(K0
p,q) = E(H) ∪ {{(j, 0), (p − j − 1, q − 1)}, 0 ≤ j ≤ p − 1}

∪ {{(0, j), (p − 1, j)}, 0 ≤ j ≤ q − 1}.

The Klein Bottle K2
p,q with p ≥ 6, p even, q ≥ 5 (Figure 3b).

E(K2
p,q) = E(H) ∪ {{(j, 0), (p − j, q − 1)}, 0 ≤ j ≤ p − 1}

∪ {{(0, j), (p − 1, j)}, 0 ≤ j ≤ q − 1}.
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Figure 3: a) K0
6,5 b) K2

6,5

The graphs Sp,q with p ≥ 3 and q ≥ 6. (Figure 4). If p ≤ q
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E(Sp,q) = E(H) ∪ {{(j, 0), (p − j, q − p + j)}, 0 ≤ j ≤ p − 1}

∪ {{(0, i), (i, q − 1)}, 0 ≤ i ≤ p − 1}

∪ {{(0, i), (p − 1, i − p)}, p ≤ i ≤ q − 1}.

If q ≤ p

E(Sp,q) = E(H) ∪ {{(j, 0), (0, q − 1 − j)}, 0 ≤ j ≤ q − 1}

∪ {{(p − 1 − i, q − 1), (p − 1, i)}, 0 ≤ i ≤ q − 1}

∪ {{(i, q − 1), (i + q, 0)}, 0 ≤ i ≤ p − q − 1}.
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Figure 4: a) S5,8 b) S8,5

Theorem 1.1 [4] If G is a locally grid graph with N vertices, then ex-
actly one of the following holds:

a) G ∼= T δ
p,q with pq = N , p ≥ 5, δ ≤ p/2 and δ + q ≥ 5 if q ≥ 4 or

δ + q ≥ 6 if q = 2, 3 or 4 ≤ δ < p/2, δ (= p/3, p/4 if q = 1.
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b) G ∼= Ki
p,q with pq = N , p ≥ 5, i ≡ p (mod 2) for i ∈ {0, 1, 2} and

q ≥ 4 + ,i/2-.

c) G ∼= Sp,q with pq = N , p ≥ 3 and q ≥ 6.

2 Tutte Uniqueness

Let G = (V,E) be a graph with vertex set V and edge set E. The rank
of a subset A ⊆ E is defined by r(A) = |A| − k(A), where k(A) is the
number of connected components of the spanning subgraph (V,A). The
rank-size generating polynomial is defined as:

R(G;x, y) =
∑

A⊆E

xr(A)y|A|

The coefficient of xiyj in R(G;x, y) is the number of spanning subgraphs
in G with rank i and j edges. This polynomial contains exactly the same
information about G as the Tutte polynomial, which is given by:

T (G;x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

hence, the Tutte polynomial tells us for every i and j the number of edge-
sets in G with rank i and size j. This fact is going to be essential in order
to prove the Tutte uniqueness of locally grid graphs. Given a locally
grid graph G, we show that for every locally grid graph H different
from G and with |V (G)| = |V (H)| there is at least one coefficient of the
rank-size generating polynomial in which both graphs differ.

Let S be the surface in which a locally grid graph G is embedded,
that is, S is a torus or a Klein bottle [4]. Given two cycles C and C ′

of G, we say that C is locally homotopic to C ′ if there exists a cycle of
length four, say H, with C ∩H connected and C ′ is obtained from C by
replacing C − (C ∩H) with H − (C ∩H). A homotopy is a sequence of
local homotopies. A cycle of G is called essential if it is not homotopic
to a cycle of length four.

Let lG be the minimum length of an essential cycle of G. Note
that lG is invariant under isomorphism. The number of essential cycles
of length lG contributes to the coefficient alG−1,lG of R(G;x, y), which
counts the number of edges sets with rank lG − 1 and size lG.

In order to show the Tutte uniqueness of locally grid graphs we are
going to use the following results proved in [4]:
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Lemma 2.1 [4] Given two graphs G and G′, if G is locally grid and
T (G;x, y) = T (G′;x, y) then G′ is locally grid.

Lemma 2.2 [4] Let G, G′ be a pair of locally grid graphs with pq ver-
tices then: a) lG (= lG′ implies T (G;x, y) (= T (G′;x, y).
b) If lG = lG′ but G and G′ do not have the same number of shortest
essential cycles, then T (G;x, y) (= T (G′;x, y).

The process we are going to follow is to pairwise compare all the
graphs given in the classification theorem of locally grid graphs. In those
cases for which the minimum length of essential cycles or the number
of cycles of this minimum length are different we have that both graphs
are not Tutte equivalent, thus the relevance of the following result.

Lemma 2.3 If G is a locally grid graph with pq vertices, then the length
lG of the shortest essential cycles and the number of these cycles are
given in the following table:

G lG number of essential cycles

Tp,q min{p, q}
q

2p

p

if p < q

if p = q

if p > q

T δ
p,q min{p, q + δ}

q

q + p

(
q + δ − 1

δ

)

p

(
q + δ − 1

δ

)

if p < q + δ

if p = q + δ

if p > q + δ

K0
p,q min{p, q + 1}

q

5q

4q

if p < q + 1
if p = q + 1
if p > q + 1

K1
p,q min{p, q}

q

q + 1
1

if p < q

if p = q

if p > q

K2
p,q min{p, q}

q

q + 2
2

if p < q

if p = q

if p > q

Sp,q min{2p, q}

2p
∑p−1

j=0

(
q − 1

j

)

q(q − p)
(

2p − 1
p

)

2q

if p ≤ q ≤ 2p

if 2p ≤ q

if q ≤ p
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Proof: The cases Tp,q, T δ
p,q and Ki

p,q are proved in [4], where it is also
shown that lSp,q = min(2p, q) and that if q ≤ p the number of shortest
essential cycles is 2q. Hence, we are only left with two cases in which
we are given lower bounds on the number of essential cycles of length
lSp,q . We are interested in calculating the exact number.

Locally grid graphs with pq vertices are constructed by adding edges
to the p× q grid. These edges are called exterior edges. Essential cycles
of shortest length are obtained by joining the two ends of an exterior
edge by a path contained in the grid p × q. In Sp,q we distinguish two
cases.

Case 1 If 2p ≤ q, every exterior edge of the form {(0, i), (p−1, i−p)}

determines
(

2p − 1
p

)
essential cycles of length 2p. We have q−p edges

of this kind and each of them can use up to q different vertices, therefore

the number of essential cycles of length 2p is q(q − p)
(

2p − 1
p

)
.

Case 2 If p ≤ q ≤ 2p, {(0, i), (i, q − 1)} and {(i, 0), (p− 1, q − p+ i)}

with 0 ≤ i ≤ p − 1 generate
(

q
i

)
essential cycles of length q. These

edges can use up to p different vertices, hence the number of essential

cycles of length q is 2p
∑p−1

j=0

(
q − 1

j

)
. !

Theorem 2.4 Let p, q ≥ 6 verify the following conditions:

a) p

(
q + δ − 1

δ

)
(= 2n for n ∈ N.

b) pq (= p′q′ for all p′, q′ ≥ 6 with p = q + δ = q′ + δ′ < p′ and

q + p

(
p − 1

δ

)
= p′

(
p − 1

δ′

)
.

Then T δ
p,q is Tutte unique for all δ ≤ p/2.

Proof: Let p, q ≥ 6 and G be a graph with T (G;x, y) = T (T δ
p,q, x, y). By

Lemma 2.1, G is a locally grid graph, hence G has to be isomorphic to
exactly one of the following graphs: Tp′,q′ , T δ′

p′,q′ , Ki
p′,q′ , Sp′,q′ . We prove

that G is isomorphic to T δ′
p′,q′ with p = p′, q = q′ and δ = δ′ assuming

that G is isomorphic to each one of the previous graphs and obtaining
a contradiction in all the cases except in the aforementioned case. In
[4] Tp,q was shown to be Tutte unique, thus we can consider δ > 0 and
G not isomorphic to Tp′,q′ .
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Case 1 Suppose G ∼= K0
p′,q′ . By Lemma 2.2, lT δ

p,q
= lK0

p′,q′
and the

number of shortest essential cycles has to be the same in both graphs.
Case 1.1 lT δ

p,q
= p, lK0

p′,q′
= p′ with p < q + δ and p′ < q′ + 1.

As a result of Lemma 2.2, p = p′ and q = q′. Our aim is to prove
that the number of edge sets with rank q and size q + 1 is different for
each graph. This would lead to a contradiction since this number is the
coefficient of xqyq+1 in the rank-size generating polynomial.

If T δ
p,q has k essential cycles of length q (δ > 1) or k + pq (δ = 1),

then K0
p,q would have k + 4q such cycles. Therefore if we can show that

there exits a bijection between edge sets with rank q and size q + 1 that
are not essential cycles, we would have proved what we want.

For every r with 0 ≤ r ≤ q − 2 denote by Er the set {((i, r), (i, r +
1)) ; 0 ≤ i ≤ p − 1}. Let A be an edge set that is not an essential cycle
with rank q and size q + 1 in T δ

p,q. Define s(A) as min{r ∈ [0, q − 2] ;
A∩Er = ∅}. If A ⊂ E(T δ

p,q) the minimum always exits. For every r with
0 ≤ r ≤ q − 2 we define the bijection, ϕr between {A ⊆ E(T δ

p,q)|r(A) =
q, |A| = q+1, s(A) = r} and {A ⊆ E(K0

p,q)|r(A) = q, |A| = q+1, s(A) =
r} as follows:

If A ⊂ E(T δ
p,q), ϕr(A) = ∪{ψ(((i, j), (i′ , j′))); ((i, j), (i′ , j′)) ∈ A}

where

ψ((h, k)) =






(h, k̂) if j′ = q − 1, j = 0

(h, k) if j, j′ ∈ [0, r]

(ĥ, k̂) if r + 1 ≤ j, j′ ≤ q − 1

with h = (i, j), k = (i′, j′), ĥ = (p−1−i+δ, j) and k̂ = (p−1−i′+δ, j′).
Case 1.2 lT δ

p,q
= p, lK0

p′,q′
= p′ = q′ + 1 with p < q + δ or lT δ

p,q
=

q + δ < p, lK0
p′,q′

= p′ with p′ < q′ + 1.

The contradiction in these two cases is produced due to the equal-
ity of shortest essential cycles, number of these cycles and number of
vertices on each graph.

Case 1.3 lT δ
p,q

= p, lK0
p′,q′

= q′ + 1 with p < q + δ and q′ + 1 < p′.

To obtain a contradiction, we are going to prove that there are more
edge-sets with rank q′ +2 and size q′ + 3 in T δ

p,q than in K0
p,q. Basically,

we are going to follow the same procedure that was developed in [4].
The previous sets can be classified into three groups:

1.- Normal edge-sets (they are edge-sets that do not contain any
essential cycle).
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2.- Sets containing an essential cycle of length q′ + 1 and two other
edges (Figure 5a).

3.- Essential cycles of length q′ + 3 (Figures 5b and 6).

a) b)

A

A

A A

BB

Figure 5: a) A set of edges in K0
p′,q′ containing an essential cycle of

length q′ + 1 and two other edges. b) Essential cycles of length q′ + 3 in
T δ

p,q.

A

A

A

A

Figure 6: Essential cycles of length q′ + 3 in K0
p′,q′

(1) By Corollary 16 of [4] we know that T δ
p,q and K0

p′,q′ have the
same number of normal edge-sets with rank q′ + 2 and size q′ + 3 that
do not contain a cycle of length four. We are going to prove that the
number of normal edge-sets with rank q′ + 2 and size q′ + 3 containing
a cycle of length four is greater in T δ

p,q than in K0
p′,q′ .

Again by Corollary 16 of [4], the number of edge-sets with rank
q′ + 1 and size q′ + 2 containing a cycle of length four is the same in
both graphs, call it sq′+1. Add one edge to each of these sets in order
to obtain a set with rank q′ + 2 and size q′ + 3. This set can be one of
the following types depending on which edge we are adding:

(a) A normal edge set with rank q′ + 2.
(b) A normal edge set containing two non essential cycles and having

rank q′ + 1.
(c) An edge set containing an essential cycle of length q′ + 1 and a

non essential cycle of length four.
Let A(G), B(G) and C(G) (where G is either T δ

p,q or K0
p′,q′), the

number of edge-sets in G that belong to the groups A, B and C respec-
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tively. We recall the following equality from [4]:

sq′+1(2pq− q′−2) = A(G)(q′−1)+
∑

B∈B(G)

(q′ +3− δ(B))+C(G)(q′−1)

where δ(B) is the number of edges of B which do not belong to any
cycle of length four in B. Since C(T δ

p,q) = 0 and C(K0
p′,q′) (= 0 we have:

A(T δ
p,q)(q′ − 1) +

∑
B∈B(T δ

p,q)(q
′ + 3 − δ(B)) =

A(K0
p′,q′)(q

′ − 1) +
∑

B∈B(K0
p′,q′)

(q′ + 3 − δ(B)) + C(K0
p′,q′)(q

′ − 1).

Applying Corollary 16 several times we get that:
∑

B∈B(T δ
p,q)

(q′ + 3 − δ(B)) =
∑

B∈B(K0
p′,q′ )

(q′ + 3 − δ(B))

hence

A(T δ
p,q)(q

′ − 1) = A(K0
p′,q′)(q

′ − 1) + C(K0
p′,q′)(q

′ − 1).

(2) In T δ
p,q, every essential cycle of length q′ + 1 plus two edges has

rank q′ + 2, but in K0
p′,q′ there are essential cycles for which if we add

two edges we obtain sets with rank q′ + 1. By hypothesis, both graphs
have the same number of shortest essential cycles therefore the number
of edge-sets in this case is greater in T δ

p,q than in K0
p′,q′ .

(3) For every essential cycle of length p = q′ + 1 in T δ
p,q we have

2
(

p
2

)
ways of adding two edges in order to obtain a new essential

cycle, hence in T δ
p,q there are 2q

(
p
2

)
essential cycles of length q′ + 3.

In [4] it is proved that in K0
p′,q′ there are 4q′

(
q′

2

)
+ 4

(
q′ + 2

3

)

essential cycles of length q′ + 3. Since p = q′ + 1 and q = 4q′, the
number of essential cycles of length q′ + 3 is greater in T δ

p,q than in
K0

p′,q′ .
Case 1.4 lT δ

p,q
= p = q + δ, lK0

p′,q′
= p′ with q′ + 1 > p′.

Suppose p = q + δ = p′ then q = q′, hence δ < 1. We get a
contradiction because δ ≥ 1.

Case 1.5 lT δ
p,q

= p = q + δ, lK0
p′,q′

= p′ = q′ + 1.
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If the length of the shortest essential cycles and the number of these
cycles coincide in both graphs, we would have p = p′, q = q′, δ = 1 and
q + pq = 5q′ therefore p = 4.

Case 1.6 lT δ
p,q

= p = q + δ, lK0
p′,q′

= q′ + 1 with p′ > q′ + 1.

q′ + 1 = p = q + δ ⇒ 4q′ = q + p

(
q′

δ

)
,

p > 4, q′ =
(

q′

q′ − 1

)
<

(
q′

δ

)
⇒ 4q′ < p

(
q′

δ

)
.

Case 1.7 lT δ
p,q

= q + δ < p, lK0
p′,q′

= p′ = q′ + 1.

q′ + 1 = p′ = q + δ and 5q′ = p

(
q + δ − 1

δ

)
.

If δ = 1 then q = q′, p = p′ = q + δ < p hence δ > 1.

p > 5 and
(

q + δ − 1
δ

)
=

(
q′

δ

)
> q′ ⇒ 5q′ < p

(
q + δ − 1

δ

)
.

Case 1.8 lT δ
p,q

= q + δ < p, lK0
p′,q′

= q′ + 1 < p′.
Now, q′ + 1 = q + δ, so we can assume that δ > 1 because if δ = 1,

then q = q′, p = p′ and the number of shortest essential cycles would
not be the same in both graphs. The contradiction in this case is similar

to the one obtained in the previous case because 4q′ = p

(
q′

δ

)
.

After these eight cases we can conclude that T δ
p,q is not isomorphic

to K0
p,q.

Case 2 Suppose G isomorphic to T δ′
p′,q′ .

Case 2.1 lT δ
p,q

= p, lT δ′
p′,q′

= p′ with p < q + δ and p′ < q′ + δ′.

As a result of Lemma 2.2, p = p′ and q = q′. Suppose δ′ < δ, as in
case 1.1 our purpose is to prove that the number of edge sets with rank
q + δ′−1 and size q + δ′ is different in each graph. If T δ

p,q has x essential

cycles of length q+δ′, T δ′
p′,q′ has x+p

( q + δ′ − 1
δ′

)
, therefore if we show

that there exits a bijection between the edge sets of non essential cycles
with rank q + δ′ − 1 and size q + δ′, we would have proved what we
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want. For every r with 0 ≤ r ≤ q − 2 we define the following bijection,
ϕr between {A ⊆ E(T δ′

p,q)|r(A) = q + δ′ − 1, |A| = q + δ′, s(A) = r} and
{A ⊆ E(T δ

p,q)|r(A) = q + δ′ − 1, |A| = q + δ′, s(A) = r}.
If A ⊂ E(T δ′

p,q), ϕr(A) = ∪{ψ(((i, j), (i′ , j′))); ((i, j), (i′ , j′)) ∈ A}
where

ψ((h, k)) =






(h, k̂) if j′ = q − 1, j = 0

(h, k) if j, j′ ∈ [0, r]

(ĥ, k̂) if r + 1 ≤ j, j′ ≤ q − 1

with h = (i, j), k = (i′, j′), ĥ = (i + δ − δ′, j) and k̂ = i′ + δ − δ′, j′).
Case 2.2 lT δ

p,q
= p, lT δ′

p′,q′
= p′ = q′ + δ′ with p < q + δ.

Suppose T (T δ′
p′,q′ ;x, y) = T (T δ

p,q;x, y) then p = p′ and q = q′ +

p′
(

q′ + δ′ − 1
δ′

)
. Since pq = p′q′ we obtain q = q′, a contradiction.

Case 2.3 lT δ
p,q

= p, lT δ′
p′,q′

= q′ + δ′ with p < q + δ and q′ + δ′ < p′.

q′ + δ′ = p ⇒ q = p′
(

p − 1
δ′

)

pq = p′q′ ⇒ p

(
q′ + δ′ − 1

δ′

)
= q′ = p − δ′

δ′ < p− 1 then p

(
q′ + δ′ − 1

δ′

)
> p. This contradiction was obtained

by having assumed that both graphs have the same Tutte polynomial.
Because of hypothesis 2, we have that the case lT δ

p,q
= p = q + δ,

lT δ′
p′,q′

= q′ + δ′ with q′ + δ′ < p′ cannot occur.

With an analogous process to the one followed in case 1.3 we prove
that the number of edge-sets with rank q′ + δ′ +1 and size q′ + δ′ +2 are
different in T δ

p,q and T δ′
p′,q′ . Therefore, lT δ

p,q
= q + δ, lT δ′

p′,q′
= q′ + δ′ < p′

is not possible.
The rest of the cases are analogous to the previous ones, hence just

one case can occur, namely, lT δ
p,q

= p = q + δ, lT δ′
p′,q′

= p′ = q′ + δ′, which

implies p = p′, q = q′ and δ = δ′.
Case 3 Suppose G 2 K1

p′,q′ , then T (T δ
p,q;x, y) = T (K1

p′,q′ ;x, y).
Because of Lemma 2.3, we cannot have p′ > q′.
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Case 3.1 lT δ
p,q

= p < q + δ, lK1
p′,q′

= p′ < q′.
As in case 1.1 we have to obtain a bijection to prove that the number

of edge-sets with rank q − 1 and size q are different in each graph.
If A ⊂ A(T δ

p,q), ϕr(A) = ∪{ψ(((i, j), (i′ , j′))); ((i, j), (i′ , j′)) ∈ A}
where

ψ((h, k)) =






(h, k̂) if j′ = q − 1, j = 0

(h, k) if j, j′ ∈ [0, r]

(ĥ, k̂) if r + 1 ≤ j, j′ ≤ q − 1

with h = (i, j), k = (i′, j′), ĥ = (p−1−i+δ, j) and k̂ = (p−1−i′+δ, j′).
The rest of the cases cannot occur because the length of shortest essen-
tial cycles, the number of these cycles and the number of vertices do
not coincide. We omit the proof for the sake of brevity.

The case G 2 K2
p′,q′ is similar to the previous ones, hence we just

specify the bijection in the case p = p′ < q′ and q = q′:
If A ⊂ A(T δ

p,q), ϕr(A) = ∪{ψ(((i, j), (i′ , j′))); ((i, j), (i′ , j′)) ∈ A}
where

ψ((h, k)) =






(h, k̂) if j′ = q − 1, j = 0

(h, k) if j, j′ ∈ [0, r]

(ĥ, k̂) if r + 1 ≤ j, j′ ≤ q − 1

with h = (i, j), k = (i′, j′), ĥ = (p − i + δ, j) and k̂ = (p − i′ + δ, j′).
Case 4 Finally, we are going to assume that G 2 Sp′,q′ . For the

cases for which lT δ
p,q

= p < q+δ and lSp′,q′ = 2p′ ≤ q′ or lT δ
p,q

= p = q+δ

and lSp′,q′ = q′ with q′ ≤ p′ we have that the length of shortest essential
cycles, the number of these cycles and the number of vertices in both
graphs, cannot coincide. Therefore we obtain a contradiction, since G
and Sp′,q′ do not have the same Tutte polynomial.

By hypothesis 1 we cannot have lT δ
p,q

= q + δ < p, lSp′,q′ = q′ with
q′ ≤ p′.

Case 4.1 lT δ
p,q

= p < q + δ, lSp′,q′ = q′ with p′ ≤ q′ ≤ 2p′.
Given that p = q′, q = p′ and the equality of the number of shortest

essential cycles q ≥ 2q′−1 we arrive to a contradiction, because: p′ ≥
2q′−1 ≥ 2p′−1 ⇒ 2p′ ≥ 2p′ .

Case 4.2 lT δ
p,q

= p < q + δ, lSp′,q′ = q′ with q′ ≤ p′

Using the same ideas as in case 1.3 we prove that the number of
edge-sets with rank q′ + 1 and size q′ + 2 is greater in T δ

p,q than in Sp′,q′ .
For the sake of brevity we only give a sketch of the proof. These sets
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are classified into three groups: normal edge-sets, sets containing an
essential cycle of length q′ and two other edges and essential cycles of
length q′ + 2. We prove that T δ

p,q has more edge sets of each type than
Sp′,q′ . The ideas are similar to case 1.3, so we just mention the last

type. In T δ
p,q we have 2

(
p
2

)
ways of adding two edges in order to get

a new essential cycle, hence there are 2q

(
p
2

)
essential cycles of length

q′ + 2. In Sp′,q′ (Figure 7) there are exterior edges to which we can add

two edges in
(

q′

2

)
+

(
q′ − 1

2

)
different ways. Since p = q′ we have

more essential cycles of length q′ + 2 in T δ
p,q than in Sp′,q′ .

A 

A 

B 

B A 

A B 

B 

b) a) 

Figure 7: a) Edge sets in Sp′,q′ with p′ ≥ q′ containing an essential cycle
of length q′ and two other edges. b) Essential cycles of length q′ + 2 in
Sp′,q′ .

Case 4.3 lT δ
p,q

= p = q + δ, lSp′,q′ = 2p′ with q′ ≥ 2p′.

Given that 2p′ = p = q + δ, we have q′ = 2q. We will obtain a
contradiction by assuming we have equality for the number of shortest
essential cycles in both graphs. In this case and in the next ones we

are going to use the following property:
(

2p′ − 1
n

)
<

(
2p′ − 1

m

)
if

n < m ≤ [(2p′ − 1)/2] = p′ − 1.

If q + p

(
q + δ − 1

δ

)
= q′(q′ − p′)

(
2p′ − 1

p′

)
then

q′(q′−p′)
(

2p′ − 1
p′

)
= q+p

(
2p′ − 1

δ

)
< q+p

(
2p′ − 1
p′ − 1

)
= q+p

(
2p′ − 1

p′

)
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< q + q′
(

2p′ − 1
p′

)
< q′

(
1 +

(
2p′ − 1

p′

))
< q′(q′ − p′)

(
2p′ − 1

p′

)
.

Case 4.4 lT δ
p,q

= p = q + δ, lSp′,q′ = q′ with p′ ≤ q′ ≤ 2p′.
q′ = p = q + δ then p′ = q. Suppose

q + p

(
q + δ − 1

δ

)
= 2p′

p′−1∑

j=0

(
q′ − 1

j

)
.

δ ≤ p/2 = q′/2 ≤ p′ = q. If δ < q ≤ p′ − 1 then:

q + p

(
q + δ − 1

δ

)
= q + p

(
q′ − 1

δ

)
= p′ + q′

(
q′ − 1

δ

)

< q′
(

1 +
(

q′ − 1
δ

))
≤ 2p′

(
1 +

(
q′ − 1

δ

))
< 2p′

p′−1∑

j=0

(
q′ − 1

j

)
.

If δ = q,
(

q′ − 1
δ

)
≤

(
q′ − 1
q − 1

)
because [(q′ − 1)/2] = q − 1. The

difference between this case and the previous one is that the last bound
is obtained as follows:

2p′
(

1 +
(

q′ − 1
δ

))
≤ 2p′

(
1 +

(
q′ − 1
q − 1

))
< 2p′

p′−1∑

j=0

(
q′ − 1

j

)
.

Case 4.5 lT δ
p,q

= q + δ < p, lSp′,q′ = 2p′ with 2p′ ≤ q′.

2p′ = q + δ and q′(q′ − p′)
(

2p′ − 1
p′

)
= p

(
2p′ − 1

δ

)
.

Since [(2p′ − 1)/2] = p′ − 1,
(

2p′ − 1
δ

)
≤

(
2p′ − 1

p′

)
,

q′(q′ − p′)
(

2p′ − 1
p′

)
≥ (2p′q′ − p′q′)

(
2p′ − 1

p′

)

≥ pq

(
2p′ − 1

δ

)
> p

(
2p′ − 1

δ

)
.

Case 4.6 lT δ
p,q

= q + δ < p, lSp′,q′ = q′ with p′ ≤ q′ ≤ 2p′.

q′ = q + δ and p

(
q + δ − 1

δ

)
= 2p′

∑p′−1
j=0

(
q′ − 1

j

)
.
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We will get a contradiction if we prove that

(
q′ − 1

δ

)
< 2

p′−1∑

j=0

(
q′ − 1

j

)
.

q′ ≤ 2p′ ⇒ [(q′ − 1)/2] ≤ p′ − 1

then
∃j0 ∈ [0, p′ − 1],

(
q′ − 1

[(q′ − 1)/2]

)(
q′ − 1

j0

)

(
q′ − 1

δ

)
≤

(
q′ − 1

[(q′ − 1)/2]

)
< 2

p′−1∑

j=0

(
q′ − 1

j

)
. !

Theorem 2.5 K0
p,q is Tutte unique for all p, q ≥ 6.

Proof: Let p, q ≥ 6 and G a graph with T (G;x, y) = T (K0
p,q;x, y). Due

to Lemma 2.1 and Theorem 2.4, G has to be isomorphic to exactly one
of the following graphs: Ki

p′,q′ , Sp′,q′ . We are going to prove that G is
isomorphic to K0

p′,q′ with p = p′, q = q′.
Suppose G isomorphic to K0

p′,q′ then lT δ
p,q

= lK0
p′,q′

and the number
of shortest essential cycles has to be the same in both graphs. We just
have to study the case in which lK0

p,q
= p < q + 1, lK0

p′,q′
= q′ + 1 with

p′ > q′ + 1. This is so because, if lK0
p,q

= q + 1 < p and lK0
p′,q′

= p′

with p′ < q′ + 1 the reasoning would be analogous and in these cases it
is easy to verify that the number of vertices and the length of shortest
essential cycles can not coincide in both graphs.

If lK0
p,q

= p < q +1, lK0
p′,q′

= q′ +1 with p′ > q′ +1 we can show that
the number of edge-sets with rank q′ + 2 and size q′ + 3 is different in
K0

p,q and K0
p′,q′ . We omit the proof because it uses the same arguments

as those in case 1.3.
Suppose G ∼= K1

p′,q′ . Since p is even and p′ odd, all the cases in which
the length of shortest essential cycles in K0

p,q is p and in K1
p′,q′ is p′ are

proved. By Lemma 2.3 we know that the number of shortest essential
cycles in K0

p,q is always bigger than one, hence we obtain a contradiction
in all those cases in which the number of shortest essential cycles in K1

p′,q′

is one. Therefore we just have to study two cases: lK0
p,q

= q + 1 < p,
lK1

p′,q′
= p′ < q′ and lK0

p,q
= q + 1 < p, lK1

p′,q′
= p′ = q′. In the first
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case we obtain a contradiction by proving that the number of edge-sets
with rank p′ + 1 and size p′ + 2 is different in each graph (following
the same reasoning as in case 1.3 of Theorem 2.4). In the second case
we show that if p′ = q′ = q + 1, pq = p′q′, p are even and p′ is odd
it must then be the case that q′ is even. By Lemmas 2.2 and 2.3,
T (K0

p,q;x, y) (= T (K2
p′,q′ ;x, y) if p′ > q′, therefore G is not isomorphic

to K2
p′,q′ . Following the same reasoning as in case 1.1 of Theorem 2.4

we show that it cannot be that lK0
p,q

= p < q + 1 and lK2
p′,q′

= p′ < q′.

We just specify the bijection between {A ⊆ E(K0
p,q)|r(A) = q, |A| =

q + 1, s(A) = r} and {A ⊆ E(K2
p′,q′)|r(A) = q, |A| = q + 1, s(A) = r}.

If A ⊂ A(K0
p,q), ϕr(A) = ∪{ψ(((i, j), (i′ , j′))); ((i, j), (i′ , j′)) ∈ A}

where

ψ((h, k)) =






(h, k̂) if j′ = q − 1, j = 0

(h, k) if j, j′ ∈ [0, r]

(ĥ, k̂) if r + 1 ≤ j, j′ ≤ q − 1

with h = (i, j), k = (i′, j′), ĥ = (i + 1, j) and k̂ = (i′ + 1, j′).
On the other hand, we prove (as in case 1.3 of Theorem 2.4) that if

lK0
p,q

= q + 1 < p and lK2
p′,q′

= p′ < q′ the number of edge-sets of rank
p′ + 1 and size p′ + 2 is different for each graph.

The other four cases obtained by considering the possible combina-
tions of the lengths of shortest essential cycles in K0

p,q and K2
p′,q′ , are

not possible since the length of shortest essential cycles, the number of
these cycles and the number of vertices cannot coincide in both graphs.

Finally, suppose G 2 Sp′,q′ .
Case 1 If lK0

p,q
= p < q + 1, lSp′,q′ = q′ with p′ ≤ q′ ≤ 2p′ we obtain

a contradiction as follows:

p < q + 1 ⇒ p′ ≤ q′ < p′ + 1 ⇒ p′ = q′ ⇒ p = q = p′ = q′.

q ≥ 2q′−1 = 2q−1.

Case 2 lK0
p,q

= p < q + 1 and lSp′,q′ = q′ ≤ p′.
As we did in case 1.3 of Theorem 2.4 we show that there are different

number of edge-sets with rank q′ + 1 and size q′ + 2 in K0
p,q and Sp′,q′ ,

hence these graphs do not have the same Tutte polynomial.
Case 3 lK0

p,q
= p = q + 1 and lSp′,q′ = 2p′ ≤ q′.
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2p′ = p = q + 1 then q′ = 2q. Since 5q = q′(q′ − p′)
(

2p′ − 1
p′

)
we

will obtain a contradiction if we prove that 5q < q′(q′ − p′).

q′(q′− p′) = 2q(2q− (p/2)) = 4q2 − pq = 4q2 − q(q +1) = q(3q− 1) > q5

Case 4 lK0
p,q

= q + 1 < p and lSp′,q′ = 2p′ ≤ q′.

2p′ = q + 1. 4q = q′(p′ − q′)
(

2p′ − 1
p′

)
≥ 2p′2

(
2p′ − 1

p′

)
>

8p′ > 8p′ − 4 = 4(2p′ − 1) = 4q.
Similarly as in the comparisons between K0

p,q and K2
p′,q′ , the rest of

the cases cannot occur because the length of shortest essential cycles,
the number of these cycles and the number of vertices do not coincide
in both graphs given that q ≥ 6. !

Theorem 2.6 The graph K1
p,q is Tutte unique for all p, q ≥ 6.

Proof: The argument of this proof is basically the same as those followed
in Theorems 2.4 and 2.5. Because of the Tutte uniqueness of T δ

p,q and
K0

p,q we only have to prove that T (G;x, y) (= T (K1
p,q ;x, y) with G ∈

{K1
p′,q′ (except if p = p′ and q = q′), K2

p′,q′ , Sp′,q′}. In every case we are
going to suppose that T (G;x, y) = T (K1

p,q ;x, y) and we will obtain a
contradiction.

Case 1 If G 2 K1
p′,q′ it is easy to prove that the length of shortest

essential cycles, the number of these cycles and the number of vertices
only coincide if p = p′ and q = q′.

Case 2 If G 2 K2
p′,q′ , by Lemmas 2.2 and 2.3 we get a contradiction

in all those cases for which the number of shortest essential cycles in
K1

p,q is one or the number of shortest essential cycles in K2
p′,q′ is two.

In the other cases a contradiction is reached because p is odd and p′ is
even.

Case 3 If G 2 Sp′,q′ we can consider p ≤ q because if p > q the
number of shortest essential cycles in K1

p,q is one and p, q ≥ 6.
If lK1

p,q
= p < q and lSp′,q′ = 2p′ ≤ q′ or lSp′,q′ = q′ with p′ ≤ q′ ≤ 2p′,

by Lemmas 2.2 and 2.3 it is easy to obtain a contradiction. The same
is true if lK1

p,q
= p = q and lSp′,q′ = q′ with q′ ≤ p′ or lSp′,q′ = q′ with

p′ ≤ q′ ≤ 2p′.
If lK1

p,q
= p < q and lSp′,q′ = q′ ≤ p′ we prove (as in previous

cases) that there are different number of edge-sets with rank q′ + 1 and
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size q′ + 2 in both graphs, hence they can not have the same Tutte
polynomial.

If lK1
p,q

= p = q and lSp′,q′ = 2p′ ≤ q′, 2p′ = p = q then q′ = 2q
therefore

q + 1 = q′(q′ − p′)
(

2p′ − 1
p′

)
= 2q(q′ − p′)

(
2p′ − 1

p′

)
> q + 1. !

Theorem 2.7 The graph K2
p,q is Tutte unique for p, q ≥ 6.

Proof: Due to Theorems 2.4, 2.5 and 2.6 we have to prove that T (G;x, y)
(= T (K2

p,q;x, y) with G ∈ {K2
p′,q′ (except if p = p′ and q = q′), Sp′,q′}

and pq = p′q′.
By Lemmas 2.2 and 2.3, T (K2

p′,q′ ;x, y) (= T (K2
p,q;x, y) if p (= p′ and

q (= q′ because the length of shortest essential cycles, the number of
these cycles and the number of vertices only coincide if p = p′ and
q = q′.

If G 2 Sp′,q′ we can assume that p ≤ q otherwise if q < p, K2
p,q has

two shortest essential cycles and by Lemma 2.2 we obtain a contradic-
tion.

Case 1 If lK2
p,q

= p < q and lSp′,q′ = q′ ≤ p′ we prove as in previous
cases that the number of edge-sets with rank q′ + 1 and size q′ + 2 is
different in both graphs. Hence these two graphs cannot have the same
Tutte polynomial, therefore we get a contradiction and G can not be
isomorphic to Sp′,q′ .

Case 2 If lK2
p,q

= p = q and lSp′,q′ = 2p′ ≤ q′ then 2p′ = p = q and
q′ = 2q hence

q + 2 = q′(q′ − p′)
(

2p′ − 1
p′

)
= 2q(q′ − p′)

(
2p′ − 1

p′

)
> q + 2.

In the other four cases we obtain a contradiction because the length
of shortest essential cycles, the number of these cycles and the number
of vertices cannot coincide in both graphs. !

Theorem 2.8 The graph Sp,q is Tutte unique for p, q ≥ 6 and 2q (=

p′
(

q′ + δ − 1
δ

)
for all p′, q′ with p′q′ = pq and δ > 0.

Proof: Suppose that Sp,q is not Tutte unique. Then, by Theorems 2.4,
2.5, 2.6, 2.7 and Lemma 2.2 Sp,q is isomorphic to Sp′,q′ with p′ (= p,
q′ (= q and pq = p′q′.
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Case 1 If lSp,q = 2p ≤ q and lSp′,q′ = q′ with p′ ≤ q′ ≤ 2p′, by
Lemma 2.2 q′ = 2p and q = 2p′ then:

q(q − p)
(

2p − 1
p

)
= 2p′(2p′ − (q′/2))

(
q′ − 1
q′/2

)

> (2p′ − (q′/2))
(

q′ − 1
q′/2

)
≥ (2p′ − p′)

(
q′ − 1
q′/2

)

= p′
(

q′ − 1
q′/2

)
>

p′−1∑

j=0

(
q′ − 1

j

)
.

Hence, the number of shortest essential cycles is different in each
graph and by Lemma 2.2 we have that Sp,q is not isomorphic to Sp′,q′ .

Case 2 If lSp,q = 2p ≤ q and lSp′,q′ = q′ ≤ p′ then 2p = q′ and
q = 2p′.

2q′ = 22p = 2
2p−1∑

j=0

(
2p − 1

j

)
< 2 · 2p

(
2p − 1

p

)

≤ q

(
2p − 1

p

)
< q(q − p)

(
2p − 1

p

)
.

We obtain a contradiction to the assumption that the number of
shortest essential cycles is equal in both graphs.

The other three cases are analogous to the previous ones. !

3 Concluding Remarks

We have shown that locally grid graphs are Tutte unique for p, q ≥ 6,
but our techniques do not apply to p = 3, 4, 5. An interesting open

problem is to prove that the number p′
(

q′ + δ − 1
δ

)
is not a power of

two. This would give a more general result about the Tutte uniqueness
of T δ

p,q and Sp,q.
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