Morfismos, Vol. 9, No. 1, 2005, pp. 35-38

A nonmeasurable set as a union of a family of increasing well–ordered measurable sets *

Juán González-Hernández César E. Villarreal

Abstract

Given a measurable space (X, \mathcal{A}) in which every singleton is measurable and which contains a nonmeasurable subset, we prove the existence of a nonmeasurable set which is the union of a well-ordered increasing family of measurable sets.

2000 Mathematics Subject Classification: 28A05, 06A05. Keywords and phrases: well order, measurable space.

1 Introduction

Using the well order principle (Zermelo's theorem) we prove, for a very general measurable space (X, \mathcal{A}) , that there exists a well ordered family (under the inclusion) of measurable sets whose union is nonmeasurable. This study is motivated by the determination of the existence of solutions in a Markov decision problem with constraints (see [3] for this topic). The problem we faced was to find an optimal stochastic kernel supported on a measurable function. This led us to try to extend the domain of a measurable function on the union of a well–ordered family of measurable sets. However, the measurability may be missed for the union of the family, as we show below.

We also give an example of a set A contained in a measurable space where each singleton is measurable, but nevertheless A can not be expressed as a well–ordered union of measurable sets.

^{*}Work partially sponsored by CONACYT grant SEP-2003-C02-45448/A-1 and PAICYT-UANL grant CA826-04.

Let us start by recalling some basic terminology and the statement of the well order principle.

Let X be a set.

- (a) A relation \leq is called a *partial order* on X if it is reflexive, antisymmetric and transitive. In this case, X is said to be *partially* ordered by \leq .
- (b) Let A be a subset of X. If there exists $x \in A$ such that $x \leq a$ for all $a \in A$, then x is called the *first* element of A (with respect to the partial order \leq).
- (c) A partial order \leq on X is called a *total order* if for each $x, y \in X$ we have $x \leq y$ or $y \leq x$.
- (d) A total order \leq in a set X is called a *well order* if every nonempty subset of X has a first element. In this case, X is said to be *well ordered*.

Theorem 1.1 (Well order principle) Let X be a set. There is a well order \leq in X.

The proof of this principle can be found, for instance, in [1, Well ordering theorem] or [2].

2 The result

Theorem 2.1 Let (X, \mathcal{A}) be a measurable space such that, for each $x \in X$, the set $\{x\}$ is measurable, and X contains a nonmeasurable set. Then there is a collection I of measurable subsets of X, well ordered by contention (\subset) , such that $\bigcup_{C \in I} C$ is nonmeasurable.

Proof: Let $A \subset X$ be a nonmeasurable set. By the well order principle, there is a well order $\leq in A$. Denote by \prec the relation $a \prec b \iff (a \leq b and a \neq b)$.

For each $d \in A$ let us define $A_d := \{x \in A : x \leq d\}$. Set $\mathcal{E} := \{A_d : d \in A\}$ and note that this set is well ordered by \subset . If all the A_d are measurable, then we take $I = \mathcal{E}$. Otherwise, there is a $d^* \in A$ such that A_{d^*} is nonmeasurable. Let $A' = \{d \in A : A_d \text{ is nonmeasurable}\}$. Since $A' \subset A$ is nonempty, there exists the first element d' of A'. Now, $A_{d'}$ is

A nonmeasurable set as a union of well-ordered measurable sets.

37

nonmeasurable and so is $A_{d'} \setminus \{d'\}$. Moreover, taking $I = \{A_d : d \prec d'\}$, we have

$$A_{d'} \setminus \{d'\} = \{d \in A : d \prec d'\} = \bigcup_{d \prec d'} A_d = \bigcup_{C \in I} C,$$

and, therefore, we can conclude that the set $\bigcup_{C \in I} C$ is nonmeasurable. Noting again that I is well ordered by \subset , the proof is complete. \Box

3 An example

We shall give an example of a measurable space in which each singleton is measurable, but there exists a nonmeasurable set A that is not the union of measurable sets in a well ordered family (under \subset).

For every set B, let #B denote the cardinality of B and 2^B the power set of B.

Let X be a set such that $\#X > \#\mathbb{R}$ (we can take $X = 2^{\mathbb{R}}$, for instance). Define the σ -algebra \mathcal{A} as the family of subsets A of X such that $A \in \mathcal{A} \iff A$ is countable or $X \setminus A$ is countable. We can take $A \subset X$ such that $\#A > \#\mathbb{R}$ and $\#(X \setminus A) > \#\mathbb{R}$. Let I be a wellordered index set, and assume that $(A_i)_{i \in I}$ is any strictly increasing net of measurable sets such that $\bigcup_{i \in I} A_i = A$. As each $X \setminus A_i \supset X \setminus A$ is uncountable, each A_i is countable. From Theorem 14, p. 179 in [2], we can see that $\#I = \#A > \#\mathbb{R}$, so the set $J := \{i \in I : \#\{j \in I\}\}$ $I: j \leq i \} > \#\mathbb{N}$ is nonempty. Let i^* be the first element of J and observe that $\#\{j \in I : j \leq i^*\} > \#\mathbb{N}$. Now, by the axiom of choice (see [1] or [2]), for each $i \in I$ we can choose $x_i \in A_i \setminus \bigcup_{j \prec i} A_i$, such that the sets $\{j \in I : j \leq i^*\}$ and $\bigcup_{j < i^*} \{x_j\}$ have the same cardinality. However, $\bigcup_{j \leq i^*} \{x_i\} \subset \bigcup_{j \leq i^*} A_j = A_i^{-}$, and so $\#A_{i^*} \geq \#\{j \in I : j \leq i^*\}$ i^* > #N; that is to say, the set A_{i^*} is uncountable, and we arrive at a contradiction because each A_i is countable. Hence, A cannot be the union of measurable sets in a well ordered family.

We would like to conclude by posing a question. Consider the measurable space $(\mathbb{R}, \mathcal{M})$, where \mathcal{M} is the Lebesgue σ -algebra, and let Abe an arbitrary nonmeasurable subset of \mathbb{R} (for an example of a non-Lebesgue measurable set see [4]). Is it always possible to express A as the limit of an increasing net $(A_i)_{i \in I}$ of elements in \mathcal{M} for some well ordered set I?

Juan González-Hernández	César E. Villarreal
Departamento de Probabilidad y	División de Posgrado en Ingeniería
Estadística,	de Sistemas,
IIMAS-UNAM,	FIME-UANL,
A. P. 20-726,	A. P. 66450,
México, D. F., 01000,	San Nicolás de los Garza, N. L.,
México.	México.
juan@sigma.iimas.unam.mx	cesar@yalma.fime.uanl.mx

References

- Halmos P. R., Naive Set Theory, Van Nostrand Reinhold, New York, 1960.
- [2] Just W.; Weese M., Discovering Modern Set Theory I, The Basics, American Mathematical Society, Providence, RI, 1996.
- [3] Piunovsky A. B., Optimal Control of Random Sequences in Problems With Constraints, Kluwer Academic Publisher, Dordrecht, 1997.
- [4] Royden H. L., Real Analysis, Macmillan, New York, 1968.