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Asymptotic normality of average cost Markov

control processes ∗

Armando F. Mendoza-Pérez

Abstract

This paper studies asymptotic normality of Markov control pro-
cesses (MCPs) in Borel spaces with unbounded cost. Under suit-
able hypotheses we show that within the class of canonical policies
there exists one where the cost is asymptotically normal.
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1 Introduction.

We study the asymptotic normality of discrete-time MCPs in Borel
spaces with possibly unbounded cost. Under suitable hypotheses we
show that within the class of so-called canonical policies, those that
minimize the limiting average variance have an asymptotic normality
behavior, that is, certain distribution of the cost is asymptotically nor-
mal. Asymptotic normality is very useful in adaptive control problems.

The only works for the variance minimization problem in MCPs are
those by Mandl [7, 9, 10], Hernández-Lerma et al. [5], Prieto-Rumeau
and Hernández-Lerma [11] and Zhu and Guo [15]. For the asymptotic
behavior of the MCPs, there are a lot fewer works. For instance, we
should mention the paper by Mandl [8] for finite state MCPs.

∗This paper is part of the author’s Doctoral Thesis written at the Departamento
de Matemáticas, CINVESTAV-IPN.
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To obtain our results we combine two approaches. The first one, to
obtain canonical policies with minimum average variance, we use theW -
uniform ergodicity assumptions in [5]. The second one follows Mandl’s
approach [8] to extend asymptotic normality for MCPs in Borel spaces.

The remainder of the paper is organized as follow. Section 2 contains
a brief description of the Markov control model of interest. In Section
3 we introduce our hypotheses and state our main result, Theorem 3.7,
which is proved in Section 4. Finally, a LQ system in Section 5 illustrates
our results.

2 The control model.

Let (X,A, {A(x) : x ∈ X}, Q,C) be a discrete time Markov control
model with state space X and control (or action) set A, both assumed
to be Borel spaces with σ-algebras B(X) and B(A), respectively. For
each x ∈ X there is a nonempty Borel set A(x) in B(A) which represents
the set of feasible actions in the state x. The set

K := {(x, a) : x ∈ X, a ∈ A(x)}

is assumed to be a Borel subset of K ×A. The transition law Q is a
stochastic kernel on X given K and the one-stage cost C is a real-valued
measurable function on K.

The class of measurable functions f : X → A such that f(x) is in
A(x) for every x ∈ X is denoted by F and we suppose that is nonempty.

Control policies. For every n = 0, 1, . . ., let Hn be the family of
admissible histories up to time n; that is, H0 := X, and Hn := Kn×X
if n ≥ 1. A control policy is a sequence π = {πn} of stochastic kernels
πn on A given Hn such that πn(A(xn)|hn) = 1 for every n-history hn =
(x0, a0, · · · , xn−1, an−1, xn) in Hn. The class of all policies is denoted by
Π.

A policy π = {πn} is said to be a (deterministic) stationary pol-
icy if there exists f ∈ F such that πn(·|hn) is the Dirac measure at
f(xn) ∈ A(xn) for all hn ∈ Hn and n = 0, 1, . . .. Following a standard
convention, we identify F with the class of stationary policies.

For notational ease we write

Cf (x) := C(x, f(x)) and Qf (·|x) := Q(·|x, f(x)) ∀x ∈ X(1)

for every stationary policy f in F.
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Let (Ω,F) be the (canonical) measurable space consisting of the
sample space Ω := (X ×A)∞ and its product σ-algebra F . Then, for
each policy π and “initial state” x ∈ X, a stochastic process {(xn, an)}
and a probability measure P π

x are defined on (Ω,F) in a canonical way,
where xn and an represent the state and control at time n, n = 0, 1, . . ..
The expectation operator with respect to P π

x is denoted by Eπ
x .

Average cost criteria. For each n = 1, 2, . . ., let

Jn(π, x) := Eπ
x

n−1∑

t=0

C(xt, at)

be the n-stage expected cost when using the policy π, given the initial
state x ∈ X. The long-run expected average cost (EAC) is then defined
as

J(π, x) := lim sup
n→∞

1
n
Jn(π, x).(2)

Definition 2.1 (a) A policy π∗ is said to be EAC-optimal if

J(π∗, x) = inf
π∈Π

J(π, x) =: J∗(x) ∀x ∈ X.(3)

(b) A stationary policy f∗ ∈ F is called canonical if there exists a
constant ρ∗ and a measurable function h1 : X → R such that

ρ∗ + h1(x) = min
a∈A(x)

[
C(x, a) +

∫

X
h1(y)Q(dy|x, a)

]
∀x ∈ X,(4)

and f∗(x) ∈ A(x) attain the minimum on the right-hand side of (4) for
every x ∈ X, i.e.,

ρ∗ + h1(x) = Cf∗(x) +
∫

X
h1(y)Qf∗(dy|x) ∀x ∈ X.(5)

If (4) and (5) are satisfied, then (ρ∗, h1, f∗) is said to be a canonical
triplet (see [1, 2, 14]).

Remark 2.2 (See [2, Section 5.2].) If (ρ∗, h1, f∗) is a canonical triplet
and in addition h1 satisfies that

lim
n→∞

1
n
Eπ

xh1(xn) = 0 ∀π ∈ Π, x ∈ X,(6)

then f∗ is EAC-optimal and ρ∗ is the optimal expected average cost, that
is,

J(f∗, x) = J∗(x) = ρ∗ ∀x ∈ X.(7)
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Hence we have
Fcp ⊂ Feac,(8)

where Fcp is the class of canonical policies and Feac ⊂ F is the class of
stationary EAC-optimal policies.

For each n = 1, 2, . . ., let

Sn(f, x) :=
n−1∑

t=0

C(xt, at)(9)

be the n-stage pathwise (or sample-path) cost when using the policy
f ∈ F, given the initial state x ∈ X.

Definition 2.3 (a) For each f ∈ F and x ∈ X, define the limiting
average variance

V (f, x) := lim sup
n→∞

1
n
Ef

x

[
Sn(f, x)− Jn(f, x)

]2

.(10)

(b) A stationary policy f̂ is called variance-minimal if

V (f̂ , x) = inf
f∈Feac

V (f, x) ∀x ∈ X.(11)

3 Assumptions and main result.

In this section we introduce conditions to study asymptotic normality.
We shall first introduce two sets of hypotheses. The first one, As-

sumption 3.1, consists of standard continuity-compactness conditions
(see, for instance, [1, 3, 5, 12]) together with a growth condition on the
one-step cost C.

Assumption 3.1 For every state x ∈ X:

(a) A(x) is a compact subset of A;

(b) C(x,a) is lower semicontinuous in a ∈ A(x);

(c) the function a 7→ ∫
X u(y)Q(dy|x, a) is continuous on A(x) for

every bounded measurable function u on X;

(d) there exists a measurable function W ≥ 1, a bounded measurable
function b ≥ 0, and nonnegative constants r1 and β with β < 1,
such that
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(d1) |C(x, a)| ≤ r1W (x) ∀(x, a) ∈ K and

(d2)
∫
XW (y)Q(dy|x, a) is continuous in a ∈ A(x); and

(d3)
∫
XW (y)Q(dy|x, a) ≤ βW (x) + b(x) for every x ∈ X.

To state our second set of hypotheses, let us first introduce the fol-
lowing notation: BW (X) denotes the normed linear space of measurable
functions u on X with finite W -norm ‖u‖W , which is defined as

‖u‖W := sup
x∈X

|u(x)|/W (x).(12)

In this case we say that u is W -bounded.
Let µ(·) be a measure on X. We write

µ(u) :=
∫

X
u(y)µ(dy)(13)

whenever the integral is well-defined.

Assumption 3.2 For each stationary policy f ∈ F:

(a) (W -geometric ergodicity) There exists a probability measure µf on
X such that

∣∣∣∣∣
∫

X
u(y)Qt

f (dy|x)− µf (u)

∣∣∣∣∣ ≤ ‖u‖WRρtW (x),(14)

for every t = 0, 1, . . ., u in BW (X) and x ∈ X, where R > 0 and
0 < ρ < 1 are constants independent of f .

(b) (Irreducibility) There exists a σ-finite measure λ on B(X) with
respect to which Qf is λ-irreducible.

Remark 3.3 (See [4, Theorem 3.5],[13, Theorem 4.5.3],[3, Theorem
10.3.6].) Under Assumptions 3.1 and 3.2, there exists a canonical triplet
(ρ∗, h1, f∗); see Definition 2.1.

To obtain asymptotic normality we need to strengthen the growth
condition on the cost function C in Assumption 3.1(d1).

Assumption 3.4 There exists a positive constant r2 such that

C4(x, a) ≤ r2W (x) ∀(x, a) ∈ K.(15)
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Remark 3.5 (a) Because W ≥ 1, Assumption 3.4 implies Assump-
tion 3.1(d1). Moreover, we have that C2(x, a) ≤ r2

1/2W (x) for
every (x, a) in K (Assumption 3.6 in [5]), condition which is nec-
essary to obtain optimal policies with minimal average variance.

(b) Under Assumptions 3.1, 3.2 and 3.4, the function h1 satisfying
(4) and (5) above is such that h2

1 and h4
1 belong to BW (X). (See

Lemma 4.3 below.)

By the Remark 3.5(b), the function Λ(·, ·) on K defined as

Λ(x, a) :=
∫

X
h1

2(y)Q(dy|x, a)−
[ ∫

X
h1(y)Q(dy|x, a)

]2

(16)

is finite-valued. This function is used to state the following variance-
minimization result.

Proposition 3.6 (See [5, Theorem 3.8] or [3, Theorem 11.3.8].) Un-
der Assumptions 3.1, 3.2 and 3.4, there exists a constant σ2∗ ≥ 0, a
deterministic canonical policy f∗ ∈ Fcp, and a function h2 in BW (X)
such that, for each x ∈ X,

σ2
∗ + h2(x) = Λf∗(x) +

∫

X
h2(y)Qf∗(dy|x)(17)

Furthermore, f∗ satisfies (11) and V (f∗, ·) = σ2∗; in fact

V (f∗, x) = µf∗(Λf∗) = σ2
∗ ∀x ∈ X(18)

and
σ2
∗ ≤ V (f, x) ∀f ∈ Feac, x ∈ X.(19)

Hence, (19) states that σ2∗ is the minimal average variance. We can
now state our main result, which is proved in Section 4.

Theorem 3.7 Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Let
f∗ ∈ Fcp be a canonical policy satisfying Proposition 3.6, and ρ∗ the
optimal average cost as in (7). Then for every initial state x ∈ X,

Sn(f∗, x)− nρ∗√
n

(20)

has asymptotically a normal distribution N(0, σ2∗) as n → ∞, with
Sn(f∗, x) as in (9).
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4 Proof of Theorem 3.7.

In the remainder of this paper we suppose that Assumptions 3.1, 3.2
and 3.4 hold.

To prove Theorem 3.7 we need some preliminary results, which are
stated as Lemmas 4.1, 4.2, 4.3.

The following lemma summarizes some well-known results, which
are stated here for ease of reference.

Lemma 4.1 Let f ∈ F be a deterministic stationary policy and {xt}
the Markov chain induced by f . Then

(a) [3, Lemma 10.4.1] For each x ∈ X and t = 1, 2, . . .

Ef
xW (xt) ≤ [1 + b/(1− β)]W (x),(21)

with b := supx∈X |b(x)|. Moreover, for every function u in BW (X)
the following limits hold:

lim
n→∞

1
np
Ef

xu(xn) = 0(22)

with p > 0.

(b) [3, Proposition 10.2.3] |Jn(f, x)−nJf | ≤ r1RW (x)/(1−ρ) ∀x ∈
X, n = 1, 2, . . ., where Jf := µf (Cf ). Hence:

(c) J(f, x) = limn→∞ Jn(f, x)/n = Jf ∀x ∈ X.

(d) [3, Proposition 10.2.3] The function

hf (x) := lim
n→∞[Jn(f, x)− nJf ]

=
∞∑

t=0

Ef
x [Cf (xt)− Jf ](23)

belongs to BW (X) which is called the “bias of f”. Moreover, by
(b), we have

‖hf‖W ≤ r1R/(1− ρ).(24)

(e) [3, Theorem 10.3.6] The pair (Jf , hf ) is the unique solution of the
Poisson equation

Jf + hf (x) = Cf (x) +
∫

X
hf (y)Qf (dy|x), ∀x ∈ X,(25)

that satisfies the condition µf (hf ) = 0.
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(f) [3, Theorem 10.3.7] If f is a canonical policy in Fcp, the corre-
sponding solution (Jf , hf ) = (ρ∗, hf ) to the Poisson equation (25)
is such that hf coincides with the function h1, with h1 as in (4)
and (5), that is,

hf (·) = h1(·) + kf

for some constant kf .

The following lemma states a stronger version of (14) and Lemma
4.1(e).

Lemma 4.2 Let w(x) := W (x)1/m with m = 2 or m = 4. For each
stationary policy f ∈ F:

(a) The Markov chain {xn} induced by f is w-geometrically ergodic,
that is,

∣∣∣∣∣
∫

X
u(y)Qt

f (dy|x)− µf (u)

∣∣∣∣∣ ≤ ‖u‖wR0ρ
t
0w(x)(26)

for all x ∈ X and t = 0, 1, . . ., where ρ0 = ρ1/m < 1 and R0 :=
R1/m;

(b) The unique solution (Jf , hf ) of the Poisson equation (25) is such
that hf is w-bounded.

Proof. (a) This part follows from [3, Lemma 11.3.9].
(b) Case m = 4: Note that (15) and part (a) of this lemma yield

the W 1/4-analogue of Lemma 4.1(d). Hence hf is W 1/4-bounded.
Case m = 2: Assumption 3.4 and the fact that W ≥ 1 imply that

|C(x, a)| ≤ r
1/4
2 W (x)1/4 ≤ r

1/4
2 W (x)1/2 ∀(x, a) ∈ K.(27)

Part (a) (with m = 2) and (27) yield the W 1/2-analogue of Lemma
4.1(d), that is, hf is W 1/2-bounded. 2

Lemma 4.3 (a) The function h1(·) satisfying (4) and (5) is W 1/4-
bounded.

(b) The function h2(·) satisfying (17) is W 1/2-bounded.
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Proof. (a) By Lemma 4.1(f), h1 coincides with hf except for an additive
constant, with f a canonical policy. From Lemma 4.2(b), hf is W 1/4-
bounded, therefore h1 is also W 1/4-bounded.

(b) From the proof of Proposition 3.6 (see for instance, [5, Theorem
3.8] or [3, Theorem 11.3.8]) we consider the new Markov control model

(X,A, {A∗(x) : x ∈ X}, Q,Λ),(28)

with A∗(x) an appropriate compact subset of A(x) for every x, and
Λ(x, a) as in (16). From part (a) of this lemma, h1 is W 1/4-bounded.
Hence we have that Λ satisfies the following growth condition

Λ2(x, a) ≤ r3W (x) ∀(x, a) ∈ K,(29)

where r3 is a positive constant. Observe that (29) yields the W 1/2-
analogue of Assumption 3.1(d1); hence, by Lemma 4.2(a), the control
model (28) is W 1/2-geometrically ergodic. Then from Lemma 4.1 ap-
plied to the control model (28) with W 1/2 instead of W , and h2 instead
of h1, it follows that h2 is W 1/2-bounded. 2

We are finally ready for the proof of Theorem 3.7.
Proof of Theorem 3.7. Let (ρ∗, h1, f∗) be a canonical triplet as in Defi-
nition 2.1. Moreover, let (σ2∗, h2, f∗) be as in Proposition 3.6.

We define

τ1(x, a) :=
∫

X
h1(y)Q(dy|x, a)− h1(x) + C(x, a)− ρ∗

and
τ2(x, a) :=

∫

X
h2(y)Q(dy|x, a)− h2(x) + Λ(x, a)− σ2

∗

for all (x, a) ∈ K. For l = 1, 2, and x ∈ X, let

ψl(x, a) :=
∫

X
hl(y)Q(dy|x, a)− hl(x),

and consider the characteristic functions

χn(u) := exp{iu(Sn(f∗, x)− nρ∗)} for n = 1, 2, · · · ;u ∈ R,

with χ0(u) := 1. Let

e1(z) := exp{iz} − iz − 1,(30)

e2(z) := exp{iz}+
z2

2
− iz − 1.(31)
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Observe that
τ1(x, a) = ψ1(x, a) + C(x, a)− ρ∗,(32)

and
τ2(x, a) = ψ2(x, a) + Λ(x, a)− σ2

∗(33)

for all (x, a) ∈ K.
To prove the theorem we have to verify that

lim
n→∞E

f∗
x χn

( u√
n

)
= exp{−1

2
σ2
∗u

2}.(34)

To this end, first notice that ψl(xm, am) for l = 1, 2, is the conditional
expectation of hl(xm+1)− hl(xm) given xm, am, that is,

ψl(xm, am) = Ef∗
x [hl(xm+1)− hl(xm)|xm, am].

This yields for l = 1, 2, with χm := χm(u) and ψl := ψl(xm, am), the
equations

0 = iuEf∗
x

[
n−1∑

m=0

χmψ1 −
n−1∑

m=0

χm

(
h1(xm+1)− h1(xm)

)]
(35)

and

0 =
u2

2
Ef∗

x

[
n−1∑

m=0

χm

(
h2(xm+1)− h2(xm)

)
−

n−1∑

m=0

χmψ2

]
.(36)

To simplify the notation, let C := C(xm, am), e1 := e1
(
u(C − ρ∗)

)

and e2 := e2
(
u(C − ρ∗)

)
. Moreover, notice that

χm+1 − χm =
[
exp{iu(C − ρ∗)} − 1

]
χm.(37)

From (30), (31) and (37) we have

Ef∗
x χn − 1 = Ef∗

x

n−1∑

m=0

(χm+1 − χm)

= Ef∗
x

n−1∑

m=0

[
iu(C − ρ∗)− 1

2
u2(C − ρ∗)2 + e2

]
χm,(38)

and

−iuEf∗
x

n−1∑

m=0

χm

(
h1(xm+1)− h1(xm)

)
=
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iuEf∗
x

[
h1(x0)− χnh1(xn) +

n−1∑

m=0

h1(xm+1)(χm+1 − χm)
]

=

iuEf∗
x

[
h1(x0)− χnh1(xn)+

n−1∑

m=0

h1(xm+1)
(
iu(C − ρ∗) + e1

)
χm

]
.(39)

Similarly,

u2

2
Ef∗

x

n−1∑

m=0

χm

(
h2(xm+1)− h2(xm)

)
=

−u
2

2
Ef∗

x

[
h2(x0)− χnh2(xn) +

n−1∑

m=0

h2(xm+1)(χm+1 − χm)
]

=

−u
2

2
Ef∗

x

[
h2(x0)− χnh2(xn)+

n−1∑

m=0

h2(xm+1)
(

exp{iu(C − ρ∗)}− 1
)
χm

]
.(40)

Adding (35)-(40) and using (32)

Ef∗
x χn−1

= iuEf∗
x

[
h1(x0)−χnh1(xn)+

n−1∑

m=0

χmτ1(xm, am)+
n−1∑

m=0

e1h1(xm+1)χm

]

−u
2

2
Ef∗

x

n−1∑

m=0

χm

{
ψ2 + 2h1(xm+1)(C − ρ∗) + (C − ρ∗)2

}

−u
2

2
Ef∗

x

[
h2(x0)− χnh2(xn) +

n−1∑

m=0

h2(xm+1)
(

exp{iu(C − ρ∗)} − 1
)
χm

]

+Ef∗
x

n−1∑

m=0

e2χm.

Hence

Ef∗
x χn − 1 = κ′′(n, u)−

u2

2
Ef∗

x

n−1∑

m=0

χm

{
ψ2 + 2h1(xm+1)(C − ρ∗) + (C − ρ∗)2

}
(41)
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with

κ′′(n, u) =

iuEf∗
x

[
h1(x0)− χnh1(xn) +

n−1∑

m=0

χmτ1(xm, am) +
n−1∑

m=0

e1h1(xm+1)χm

]

−u
2

2
Ef∗

x

[
h2(x0)−χnh2(xn) +

n−1∑

m=0

h2(xm+1)
(

exp{iu(C−ρ∗)}−1
)
χm

]

+Ef∗
x

n−1∑

m=0

e2χm.(42)

Observing that

Λ(xm, am) = Ef∗
x [h2

1(xm+1)|xm, am]−
(
Ef∗

x [h1(xm+1)|xm, am]
)2

and in view of (33), we can express (41) as

Ef∗
x χn−1

= κ′′(n, u)− u
2

2
Ef∗

x

n−1∑

m=0

χm

{
σ2
∗+τ2(xm, am)−h2

1(xm+1)

+
(
Ef∗

x [h1(xm+1)|xm, am] + C(xm, am)− ρ∗
)2}

= κ′′(n, u)− u
2

2
Ef∗

x

n−1∑

m=0

χm

{
σ2
∗+τ2(xm, am)−h2

1(xm+1)

+
( ∫

X
h1(y)Q(dy|xm, am) + C(xm, am)− ρ∗

)2}
.

Since f∗ is a canonical policy, it satisfies

h1(xm) =
∫

X
h1(y)Q(dy|xm, am) + C(xm, am)− ρ∗.

Then, from (37), we have

Ef∗
x χn−1

= κ′′(n, u)− u2

2
Ef∗

x

n−1∑

m=0

χm

{
σ2
∗ + τ2(xm, am)−h2

1(xm+1)+h2
1(xm)

}
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= κ′′(n, u)− u2σ2∗
2

n−1∑

m=0

Ef∗
x χm− u2

2
Ef∗

x

[
h2

1(x0)−χnh
2
1(xn)

+
n−1∑

m=0

χmτ2(xm, am) +
n−1∑

m=0

h2
1(xm+1)(χm+1 − χm)

]
.

= κ′′(n, u)− u2σ2∗
2

n−1∑

m=0

Ef∗
x χm− u2

2
Ef∗

x

[
h2

1(x0)−χnh
2
1(xn)

+
n−1∑

m=0

χmτ2(xm, am) +
n−1∑

m=0

h2
1(xm+1)

(
exp{iu(C − ρ∗)} − 1

)
χm

]
.

Hence

Ef∗
x χn = 1− u2σ2∗

2

n−1∑

m=0

Ef∗
x χm + κ′(n, u)(43)

with

κ′(n, u) = κ′′(n, u)−u
2

2
Ef∗

x

[
h2

1(x0)−χnh
2
1(xn)+

n−1∑

m=0

χmτ2(xm, am)

+
n−1∑

m=0

h2
1(xm+1)

(
exp{iu(C − ρ∗)} − 1

)
χm

]
.(44)

Let us rewrite (43) as

Ef∗
x χn = 1 +

(
exp{−u

2σ2∗
2
} − 1

) n−1∑

m=0

Ef∗
x χm + κ(n, u),(45)

with

κ(n, u) := κ′(n, u) +
[
1− u2σ2∗

2
− exp{−u

2σ2∗
2
}
] n−1∑

m=0

Ef∗
x χm.(46)

From (45), an induction argument gives

Ef∗
x χn(u) = exp{−nσ

2∗u2

2
}+

[
exp{−σ

2∗u2

2
} − 1

] n−1∑

m=0

exp
{
− σ2∗u2

2
(n− 1−m)

}
κ(m,u)

+κ(n, u).(47)
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Observe that the proof of the limit (34) and consequently of Theorem
3.7 follows from (47) if we show

max
1≤m≤n

|κ(m, u√
n

)| → 0 as n→∞.(48)

This relation is obtained by an inspection of the different terms of
κ(m,u/

√
n). We will do this in the following six steps.

(i) Since f∗ is a canonical policy satisfying (5), we have τ1(xm, am) =
0 for m = 0, 1, · · · in (42). Similarly, by (17), τ2(xm, am) = 0 in (44).

(ii) From (22) we have that

lim
n→∞

1√
n
Ef∗

x h(xn) = 0 and lim
n→∞

1
n
Ef∗

x h(xn) = 0

for every h in BW (X). This limit appears in (42) and (44) when we
replace u by u/

√
n.

(iii) In this part we prove the limit (see (42))

lim
n→∞

1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm = 0.

From the fact |e1(z)| ≤ z2/2 for all z in R, we obtain

∣∣∣ 1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm

∣∣∣

≤ 1
2
√
n
Ef∗

x

n−1∑

m=0

u2

n
|h1(xm+1)|(C(xm, am)− ρ∗)2

=
u2

2n3/2
Ef∗

x

n−1∑

m=0

|
∫

X
h1(y)Qf∗(dy|xm)|(Cf∗(xm)− ρ∗)2.

By Lemma 4.3(a), h1(·) is 4
√
W -bounded, in particular h1(·) is

√
W -

bounded. Hence the function
∫
X h1(y)Qf∗(dy|·) is

√
W -bounded. On

the other hand, by Assumption 3.4 (Cf∗(x)−ρ∗)2 is also
√
W -bounded.

Therefore
∣∣∣ 1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm

∣∣∣ ≤ λu2

2n3/2
Ef∗

x

n−1∑

m=0

W (xm)

where λ is a constant depending on h1 and C. By (21) we obtain

∣∣∣ 1√
n
Ef∗

x

n−1∑

m=0

e1h1(xm+1)χm

∣∣∣ ≤ λu2

2n3/2
n[1 + b/(1− β)]W (x).
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which converges to zero as n→∞.
(iv) We shall next prove

lim
n→∞

1
n
Ef∗

x

n−1∑

m=0

e2χm = 0.

This limit appears in (42) when we replace u by u/
√
n.

Observe that |e2(z)| ≤ |z|3/6 for all z in R. So, by Assumptions
3.1(d) and 3.4, together with (21),

∣∣∣ 1
n
Ef∗

x

n−1∑

m=0

e2χm

∣∣∣ ≤ |u|3
6n5/2

Ef∗
x

n−1∑

m=0

|Cf∗(xm)− ρ∗|3

≤ k3|u|3
6n5/2

Ef∗
x

n−1∑

m=0

W (xm)3/4

≤ k3|u|3
6n5/2

Ef∗
x

n−1∑

m=0

W (xm)

≤ k3|u|3
6n3/2

[1 + b/(1− β)]W (x)

which converges to zero as n→∞, with k a constant.
(v) Let h be a

√
W -bounded function on X. Then

lim
n→∞

1
n
Ef∗

x

n−1∑

m=0

h(xm+1)
(

exp{i u√
n

(C − ρ∗)} − 1
)
χm = 0.

This limit appears in (42) and (44) when u is replaced by u/
√
n.

It follows from the relation e1(z) = exp{iz} − iz − 1 that

exp{i u√
n

(C − ρ∗)} − 1 = i
u√
n

(C − ρ∗) + e1
( u√

n
(C − ρ∗)

)
.

So

| 1
n
Ef∗

x

n−1∑

m=0

h(xm+1)
(

exp{i u√
n

(C−ρ∗)}− 1
)
χm| ≤

|u|
n3/2

Ef∗
x

n−1∑

m=0

|h(xm+1)||(Cf∗(xm)− ρ∗)|+ 1
n
Ef∗

x

n−1∑

m=0

|h(xm+1)||e1|.

This gives the desired conclusion by similar arguments to those in (iii).
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(vi) The absolute value of the expression within brackets in (46)
is majorized by σ4∗u4/8, then the corresponding term in κ(n, u/

√
n) is

majorized by σ4∗u4/8n2.
The statements (i)-(vi) imply (48) and consequently prove the the-

orem. 2

Remark 4.4 Taking A as a single-point set (singleton) we obtain the
Central Limit Theorem for (noncontrolled) Markov chains.

5 An example: a LQ system

Consider the linear system

xt+1 = k1xt + k2at + zt, t = 0, 1, · · · ,(49)

with state space X := R and positive coefficients k1, k2. The control
set is A := R, and the set of admisible controls in each state x is the
interval

A(x) := [−k1|x|/k2, k1|x|/k2].(50)

The disturbances zt consists of i.i.d. random variables with values in
Z := R, zero mean and finite variance, that is,

E(zt) = 0, σ2 := E(z2
t ) <∞.(51)

To complete the description of our control model we introduce the
quadratic cost-per-stage function

C(x, a) := c1x
2 + c2a

2 ∀(x, a) ∈ K,(52)

with positive coefficients c1, c2. We also define

W (x) := exp[γ|x|] for all x ∈ X,(53)

with γ ≥ 4. clearly, Assumption 3.4 holds. Moreover, let ŝ > 0 be such
that

γŝ < log(γ/2 + 1),

which implies

β :=
2
γ

(exp[γŝ]− 1) < 1.(54)

Throughout the rest of this section, we suppose the following As-
sumptions taken from [6, Section 5]:
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Assumption 5.1 0 < k1 < 1/2.

Assumption 5.2 The i.i.d. disturbances zt have a common density g,
which is a continuous bounded function supported on the interval S :=
[−ŝ, ŝ]. Moreover, there exists a positive number ε such that g(s) ≥ ε
for all s ∈ S.

These assumptions, 5.1 and 5.2, imply that Assumptions 3.1 and 3.2
hold ( see, for instance,[6, Propositions 6, 23 and 24]).

On the other hand, in [6] it is proved that there exists a unique
canonical policy given by

f∗(x) = −f0x, ∀x ∈ X,(55)

satisfying (4) and (5), with

f0 :=
v0k1k2

c2 + v0k2
2

and v0 is the unique positive solution to the quadratic (so-called Riccati)
equation

k2
2v

2
0 + (c2 − c1k

2
2 − c2k

2
1)v0 − c1c2 = 0.

In this case, the corresponding function h1(·) is given by

h1(x) = v0x
2 ∀x ∈ X,(56)

and the optimal value is
ρ∗ = v0σ

2,(57)

where σ as in (51). Thus (ρ∗, h1, f∗) is a canonical triplet for our linear
quadratic Markov control model.

Since f∗ in (55) is the unique canonical policy, by Proposition 3.6
we have that this policy also minimizes the limit average variance. In
particular, the optimal value for the variance is

σ2
∗ = V (f∗, x) = lim

n→∞
1
n

n−1∑

t=0

Ef∗
x Λf∗(xt),(58)

We next calculate the limit in (58) and find the value of the optimal
variance. To this end, let k̂ := k1−k2f0, B :=

∫
R z

3g(z) dz and D :=∫
R z

4g(z) dz. Then by (16), (55) and (56), we have

Λf∗(xt) = v2
0

[
4k̂2σ2Ef∗

x (x2
t ) + 4k̂BEf∗

x (xt) +D − σ4
]
,(59)
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Replacing at in (49) with at := f∗(xt) = −f0xt, we obtain

xt = (k1 − k2f0)xt−1 + zt−1 = k̂xt−1 + zt−1 ∀t = 1, 2, · · · .

By (50) and Assumption 5.1, we can check that |k̂| < 1.
By an induction procedure, for all t = 1, 2, · · ·,

xt = k̂tx0 +
t−1∑

j=0

k̂jzt−1−j .

From this relation, we obtain

Ef∗
x (xt) = k̂tx,(60)

and
Ef∗

x (x2
t ) = k̂2tx2 + σ2(1− k̂2t)/(1− k̂2).(61)

The relations (60) and (61) imply the limits

lim
n→∞

1
n

n−1∑

t=0

Ef∗
x (xt) = 0 and lim

n→∞
1
n

n−1∑

t=0

Ef∗
x (x2

t ) = σ2/(1− k̂2).(62)

Hence, by (59) and (62) we obtain

σ2
∗ = lim

n→∞
1
n

n−1∑

t=0

Ef∗
x Λf∗(xt)

= v2
0

[5k̂2 − 1
1− k̂2

σ4 +
∫

R
z4g(z) dz

]
≥ 0.(63)

Finally, by Theorem 3.7 and considering (57), we obtain that for every
initial state x ∈ X, as n→∞, the distribution of the cost

∑n−1
t=0 Cf∗(xt)− nv0σ

2

√
n

has an asymptotic normal distribution N(0, σ2∗) with σ2∗ as in (63).
By (5), we obtain v0(1 − k̂2) = c1 + c2f

2
0 . Hence, Cf∗(x) = (c1 +

c2f
2
0 )x2 = v0(1− k̂2)x2 for all x. This implies that for every initial state

x, as n→∞, ∑n−1
t=0 x

2
t − nσ2/(1− k̂2)√

n
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has asymptotic normal distribution N(0, s2), where

s2 =
[5k̂2 − 1

1− k̂2
σ4 +

∫

R
z4g(z) dz

]/
(1− k̂2)2.
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