
Morfismos, Vol. 18, No. 1, 2014, pp. 1–29

Mapping class groups and function spaces:

a survey∗

Fred R. Cohen Miguel A. Maldonado 1
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Abstract

This paper is a survey of the relationship between labelled con-
figuration spaces, mapping class groups with marked points and
function spaces. In particular, we collect calculations of the co-
homology groups for the mapping class groups of low-genus ori-
entable and non-orientable surfaces.
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1 Introduction

The mapping class group Γ(S) of an orientable surface (closed, con-
nected, orientable compact smooth 2-manifold) S is the group of iso-
topy classes in Top+(S), the group of orientation-preserving homeo-
morphisms of S or, in other words, Γ(S) = π0Top+(S) [4, 29]. Since we
can define the mapping class group within other contexts (PL category,
smooth category) obtaining isomorphic groups, in various parts of this
paper we sometimes use the diffeomorphism group Diff+(S) instead of
Top+(S) [12].

The mapping class group of a surface is closely related to many parts
of mathematics. Here, we present the relationship of this group to the
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homotopy theory of configuration spaces. In particular, we are inter-
ested in how configuration spaces of surfaces are used in (co)homology
calculations for mapping class groups by considering these spaces and
some generalizations in the construction of Eilenberg-Mac Lane spaces
for Γ(S) as well as some variants of it. This relation allows us to consider
the unstable range of the homology and cohomology of mapping class
groups by adopting a homotopical point of view. In particular we use the
function space map(X,Y ), and pointed function space map∗(X,Y ) for
obtaining “global information” for the (co)homology of mapping class
groups with all finite marked points.

The authors thank Ulrike Tillmann for her useful suggestions.

2 Mapping class groups with marked points

There are variants of the mapping class group Γ(S) which are deter-
mined by restricting to certain substructures on S and/or by restrictions
on the behaviour of homeomorphisms on that structure. The main case
in the present survey is the mapping class group with marked points
Γk(S) defined as the group of isotopy classes in Top+(S; k), the group
of homeomorphisms which leave a set of k distinct points in S invariant,
that is Γk(S) = π0Top+(S; k). We define the pure mapping class group
with k marked points PΓk(S) as the kernel of the natural homomor-
phism Γk(S)→ Σk, obtained by the action of Γk(S) on punctures. For
the orientable surface Sg of genus g we will use the following notation
Γg = Γ(Sg) and Γkg = Γk(Sg). Also, when one of the parameters g, k is
zero it will be omitted from the notation.

One reason for considering marked points is that information about
low genus surfaces gives information about surfaces of higher genus via
the theory of branched covers. One example is the central extension
1→ Z/2Z→ Γ2 → Γ6 → 1 of [3, 7] used in [2] to work out the homology
of Γ2 from that of Γ6. Also, for genus g ≥ 2 surfaces, the well-known
Birman short exact sequence 1→ π1Fk(Sg)/Σk → Γkg → Γg → 1 is used
in inductive processes; see for example [47] where this sequence is used
to inherit cohomological properties from Γg to mapping class groups
with marked points.

The homology and cohomology of a discrete group G can be stud-
ied from a homotopical viewpoint by considering Eilenberg-Mac Lane
spaces K(G, 1). For the braid group of a surface different from the
sphere S2 and the projective plane RP2 the configuration spaces Fk(M)
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and Fk(M)/Σk, are K(G, 1)’s, where the fundamental groups are de-
noted Pk(S) and Bk(S), respectively. In the case the surface S is R2,
then the groups Pk(R2) and Bk(R2) are Artin’s pure braid group with k
strands, respectively Artin’s braid group with k strands. For the cases
of S2 and RP2 certain Borel constructions are needed. This setting
can be considered as a starting point for the results exposed here. For
completeness we recall this construction in what follows.

Consider the group Top+(S) acting transitively on the configura-
tion space Fk(S)/Σk. Note that for a basepoint x̂ ∈ Fk(S)/Σk, the
isotropy subgroup is precisely Top+(S; k). From this setting, there is
an induced homeomorphism Top+(S)/Top+(S; k) ∼= Fk(S)/Σk. Under
these conditions, the homotopy orbit space

(1) ETop+(S) ×
Top+

(S)

Fk(S)/Σk

is homotopy equivalent to ETop+(S)/Top+(S; k), a model for the clas-
sifying space of Top+(S; k). Note that the fundamental group of this
space is isomorphic to π1BTop+(S; k) ∼= Γk(S), the mapping class group
of S with marked points.

Classical theorems concerning the homotopy type of the group
Diff+(S) (or Top+(S), see for example [25, 34]) give a better description
of the space (1) above allowing applications to compute cohomology for
several cases. These cases will be recalled in the next sections relating
the spaces involved with function spaces. For example, if k ≥ 3, then
the construction ESO(3)×SO(3) F (S2, k)/Σk is a K(Γk, 1) [2, 17, 9].

3 On the labelled configuration space

In this section we will recall the main properties of the labelled config-
uration space C(M ;X). All the theory presented here is an exposition
of the paper [10] as well as [18].

For a smooth m-manifold M we consider the configuration space
with labels in X as the space C(M ;X) of finite configurations of points
in M parametrized by X, where X is pointed space with base-point
denoted by ∗.

C(M ;X) =

∐
k≥1

Fk(M) ×
Σk

Xk

/ ≈,



4 F. Cohen and M. Maldonado

under the relation ≈ given by

[m1, . . . ,mk;x1, . . . , xk] ≈ [m1, . . . ,mk−1;x1, . . . , xk−1], if xk = ∗.

Equivalently, the space C(M ;X) consist of equivalence classes of pairs
[S, f ], where S ⊂ M is a finite set and f : S → X. The equivalence
relation is generated by

[S\{k}, f |S\{k}] ≈ [S, f ], for f(k) = ∗

Note that for X = S0 the space C(M ;X) is the union of all finite
unordered configurations of M .

There is a description of C(M ;X) as a space of sections that will
be used throughout the present exposition. In what follows we will
recall this relation. Consider the disc bundle D(M) ⊂ T (M) in the
tangent bundle T (M) of M and define Ṫ (M) by the identification of
two vectors that lie in the same fiber and outside D(M), this gives a
Sm = Dm/∂Dm-bundle Ṫ (M)→M . Denote by Ṫ (M ;X) the fibrewise
smash product of the bundle Ṫ (M)→M with X to obtain a bundle

Ṫ (M ;X) −→M

where Ṫ (M ;X) is the total space over M with fibre ΣmX.

Next, consider Γ(M ;X) the space of sections of Ṫ (M ;X). In the
special case of X = S0, D. McDuff ([49]) gives a proof that there is
a map C(M ;S0) → Γ(M ;S0) which induces a homology isomorphism
through a range increasing with k on the level of a map Fk(M)/Σk →
Γk(M ;S0), the path-component of degree k maps. A further statement
in case X is path-connected is given in [8] and [30]: There is a homotopy
equivalence

γ : C(M ;X) −→ Γ(M ;X)

for path-connected X.

In particular, if M is parallelizable then C(M ;X) ' map(M,ΣmX).
Moreover, one has Γ(M ; ΣkX) ' map(M,Σm+kX), where the tangent
bundle of M plus a trivial k-plane bundle over M is a trivial bundle.
Thus for example if M = Sn, then the tangent bundle of Sn plus a
trivial line bundle gives a trivial (n+ 1)-plane bundle.

The case when the manifold is a sphere will be of importance for
relating function spaces with mapping class groups so we recall it here:
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Lemma 3.1 ([10]). For a connected CW-complex X there is a homotopy
equivalence

C(Sm; ΣX) ' map(Sm,Σm+1X) = ΛmΣm+1X.

The homotopy equivalence γ above commutes with the map φ∗ in-
duced by an isometry φ : M →M which acts on C(M ;X) and Γ(M ;X)
in a natural way inducing the following commutative diagram

C(M ;X)

φ∗

��

γ // Γ(M ;X)

φ∗

��
C(M ;X)

γ // Γ(M ;X).

Moreover, assume that M is a Riemannian manifold with a subgroup G
of the isometry group of M . Then there is a G-equivariant homotopy
equivalence ([11, 55]).

(2) EG×G C(M ;X) −→ EG×G Γ(M ;X)

which will be used later for relating the homotopy orbit space of the
previous section with explicit calculations for mapping class groups with
marked points.

The space C(M ;X) has a natural filtration Ck(M ;X) given by
lengths of configurations and for Dk(M ;X) = Ck(M ;X)/Ck−1(M ;X)
the space C(M ;X) stably splits as the wedge

∨
k≥1Dk(M ;X) ([21],

[16]) and so there is an homology isomorphism

H̃∗(C(M ;X);F) ∼=
∞⊕
k=1

H̃∗(Dk(M ;X);F)

for any field F of characteristic zero.

Daniel Kahn first gave a stable decomposition for Ω∞Σ∞(X) [40].
V. Snaith first proved that ΩnΣn(X) stably splits [65]. Subsequently,
it was shown that a similar decomposition applies to C(M,X) in case
X has a non-degenerate base-point, and M is any ”reasonable” space.
[21, 16] as observed earlier in [22].

3.1 Some notes on the homology of Fk(M)/Σk

In the case of configurations of points parametrized by a sphere Sn the
space Dk(M ;Sn) is equal to Fk(M)×Σk

Snk/Fk(M)×Σk
∗. The action
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of Σk on Hnk(S
nk) = Z, with the usual sign conventions, is trivial if n

is even and is the sign action if n is odd and this information forces the
homology of Dk(M ;Sn) to give the homology of Fk(M)/Σk if n is even
and if n is odd it gives the homology of Fk(M)/Σk with coefficients in
the sign representation. More information will be given in Section 4
below and for the rest of the section we will assume that n is even.

The space Dk(M ;Sn) is homeomorphic to the Thom space T (η) of
a vector bundle over the configuration space Fk(M)/Σk ([67]) giving an
isomorphism for a fixed k

H∗(Fk(M)/Σk;F) ∼= H∗+kn(Dk(M ;Sn);F)
∼= H∗+kn(C(M ;Sn);F)

for 0 < j < mk where m is the dimension of M with sufficiently large
n.

From this result it is possible to describe the homology of Fk(M)/Σk

additively since the homology of C(M ;Sn) is given as the graded vector
space

(3)
m⊗
q=0

⊗
βq

H∗(Ω
m−qSm+n;F)

where βq is the q-th Betti number of M (that is, the dimension of
Hq(M ;F)) and F is a field of characteristic zero with the restriction of
m + n to be odd if computations are taken over other field than F2

([10]). Every factor on the product (3) above is an algebra with weights
associated to its generators and the reduced homology of Dk(M ;Sn) is
the vector subspace generated by all elements of weight k. Finally, the
additive structure of the homology of unordered configurations can be
found by counting generators of weight k (See [10]).

When M is a surface the mod-2 homology of the labelled configura-
tion space C(M ;Sn) is given by the tensor product H∗(Ω

2Sn+2)⊗β0 ⊗
H∗(ΩS

n+2)⊗β1 ⊗H∗(Sn+2)⊗β2 . We will use the term for Ω2Sn+2 to ex-
press homology of unordered configurations in terms of the homology of
classical braid groups.

First consider the product (3) above when M is a surface with Betti
numbers β0, β1, β2 given by β0 = 1 = β2, and β1 = 2g for mod-2 homol-
ogy. Then

H∗(C(M ;Sn);F2) ∼= H∗(Ω
2Sn+2;F2)⊗ (F2[x])⊗2g ⊗ (F2[u]/u2).
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An element on this product has the form y ⊗ xl ⊗ uε, where y runs
over an additive basis for H∗(Ω

2Sn+2;F2) and x, u are the fundamental
classes on degrees n+ 1 and n+ 2, respectively. The weight function is
given as

ω(u) = 1, ω(xi) = i, for i = 1, 2, . . .

The generator y relates this setting with the braid groups Bk by recalling
that C(R2;Sn) is homotopy equivalent to Ω2Σ2Sn = Ω2Sn+2 from which
one gets

H̃q(Ω
2Sn+2;F2) ∼=

⊕
k

H̃q−kn(Fk(R2)/Σk;F2)

∼=
⊕
k

H̃q−kn(Bk;F2)

Similar methods were developed in [20] where the equivariant homol-
ogy of configurations Fk(Rn) with coefficients in the following modules
were first worked out:

1. The trivial representation,

2. the sign representation,

3. representations afforded by left cosets of Young subgroups of the
symmetric groups, and

4. the homology of the space Fk(Rn) ×Σk
Xk where X is any com-

pactly generated weak Hausdorff space with non-degenerate base-
point ([20] page 226, Corollary 3.3).

These results were given in terms of analogues of graded Lie algebras
with certain operations. The methods use Rn in basic ways.

3.1.1 Configurations on a sphere

Let us move a step backwards by letting M = Sr and consider the
isomorphism

(4) H∗(C(Sr;Sn);F2) ∼= H∗(Ω
rSr+n;F2)⊗ F2[u]/u2.

where the generators in this product have the form y ⊗ uε, for ε = 0, 1.

As in the last page, we use that C(Rr;Sn) is homotopy equivalent
to ΩrΣrSn ' ΩrSr+n to get

H̃q(Ω
rSr+n;F2) ∼=

⊕
k

H̃q−kn(Fk(Rr)/Σk;F2)
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Since the homology of Fk(S
r)/Σk is obtained from that of C(Rr;Sn) by

considering monomials of weight k we have the generator y must have
degree |y| = q + kn − ε(r + n) and weight ω(y) = k − ε according to
which one has

Hq+rn(Dk(Rr;Sn);F2) ∼= Hq(Fk(Rr)/Σk;F2)

Hq+rn−(r+n)(Dk−1(Rr;Sn) ∼= Hq−r(Fk−1(Rr)/Σk−1;F2)

From these expressions we finally get the isomorphism of vector spaces

Hq(Fk(S
r)/Σk;F2) ∼= Hq(Fk(Rr)/Σk;F2)

⊕
Hq−r(Fk−1(Rr)/Σk−1;F2)

which in the case of the 2-sphere gives

Hq(Fk(S
2)/Σk;F2) ∼= Hq(Bk;F2)

⊕
Hq−2(Bk−1;F2)

as stated in [9].

3.1.2 Configurations in non-orientable surfaces

Let Ng be the compact non-orientable surface of genus g, where genus
means the number of projective planes in a connected sum decomposi-
tion; that is, N1 is RP2 and N2 is the Klein bottle. The mod-2 homology
of labelled configurations in Ng is given as the tensor product

H∗(C(Ng;S
n);F2) ∼= H∗(Ω

2Sn+2;F2)⊗ (F2[x])⊗g ⊗ F2[u]/u2.

where x, u are the fundamental classes on degrees n+1 and n+2, respec-
tively. In what follows we will describe the relation of this isomorphism
with braid groups for the cases g = 1, 2. More details can be found in
[54].

For the projective plane RP2 consider the tensor product

H∗(C(RP2;Sn)) ∼= H∗(Ω
2Sn+2)⊗ F2[x]⊗ F2[u]/u2,

with basis monomials of the form y ⊗ xr ⊗ uε, for ε = 0, 1 and r =
0, 1, 2, . . . . Degree and weight for elements in the form xr⊗uε are given
by εn + 2ε + rn + r and ε + r, respectively. Thus, fixing q and k, the
monomial y ⊗ xr ⊗ uε represents a generator in Hq(Fk(RP2)/Σk;F2) ∼=
Hq+kn(Dk(RP2;Sn);F2 if and only if the degree and weight of y are
given by |y| = q + (k − r − ε)n − 2ε − r and ω(y) = k − (ε + r). A
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careful analysis on the possibilities of the numbers involved lead to the
following isomorphisms of underlying spaces

Hq+(k−r)n−r
(
Dk−r(R2;Sn);F2

) ∼= Hq−r(Bk−r;F2)

Hq+(k−r−1)n−r−2

(
Dk−r−1(R2;Sn);F2

) ∼= Hq−r−2(Bk−r−1;F2)

Finally we get that Hq(Fk(RP2)/Σk;F2) is isomorphic to

min{q,k}⊕
r=0

Hq−r(Bk−r;F2) ⊕
min{q−2,k−1}⊕

`=0

Hq−r−2(Bk−r−1;F2)

as graded vector spaces.

In the case of configurations on the Klein bottle K one considers the
isomorphism

H∗(C(K;Sn)) ∼= H∗(Ω
2Sn+2)⊗ F2[x1, x2]⊗ F2[u]/u2,

having basis all elements of the form uε ⊗ xr1 ⊗ xs2 ⊗ y, for ε = 0, 1 and
r, s = 0, 1, 2, . . . . Notice that monomials of the form uε ⊗ xr1 ⊗ xs2 have
degree and weight given by

|uε ⊗ xr1 ⊗ xs2| = εn+ 2ε+ (r + s)(n+ 1),

ω(uε ⊗ xr1 ⊗ xs2) = ε+ r + s

As before, fix q and k and note the degree and weight of y are given by

|y| = q + (k − r − s− ε)n− 2ε− r − s
ω(y) = k − (ε+ r + s) = k − ε− r − s

leading to the isomorphisms

Hq+(k−r−s)n−r−s
(
Dk−r−s(R2;Sn);F2

) ∼= Hq−r−s(Bk−r−s;F2)

Hq+(k−r−s−1)n−r−s−2(Dk−r−s−1(R2;Sn);F2) ∼=
∼= Hq−r−s−2(Bk−r−s−1;F2)

Finally, from these expressions, Hq(Fk(K)/Σk;F2) is isomorphic as
graded vector space, to the direct sum⊕

r,s

Hq−r−s(Bk−r−s;F2) ⊕
⊕
r,s

Hq−r−s−2(Bk−r−s−1;F2),

where the indices r, s run over the non-negative integers such r + s ≤
min{q, k} in the first direct sum and r + s ≤ min{q − 2, k − 1} in the
second direct sum.



10 F. Cohen and M. Maldonado

4 A bundle-generalization of C(M ;X)

We collect here some results on a bundle-generalization of the labelled
configuration space C(M ;X) taken from [9]. Let π : E → B be a fibre
bundle with fibre Y and define

E(π, k) = {(x1, . . . , xk) ∈ Ek | xi 6= xj , π(xi) = π(xj), i 6= j}.

The space E(π, k) and the unordered version E(π, k)/Σk are total spaces
of fiber bundles with fiber configuration spaces

Fk(Y ) −→ E(π, k)
p−→ B, Fk(Y )/Σk −→ E(π, k)/Σk

p−→ B

where p is the projection on the first coordinate. These fiber-analogues
of configuration spaces have appeared in [17]. As before, let X be a
CW-complex with basepoint ∗ and define

E(π;X) =

∐
k≥0

E(π, k) ×
Σk

Xk

 / ≈,

where ≈ is the relation given for C(M ;X) by requiring π(S) to be a
single point. In fact, note that when B is a point, then E(π,X) =
C(Y,X) and so E(π;X) are bundle-generalizations of labelled configu-
ration spaces.

There is also a description of E(π;X) in terms of pairs [S, f ] re-
quiring that π(S) is a single point. So there is a filtration Ek(π;X) by
the cardinality of S. As before, if we denote by Dk(π;X) the filtration
quotient Ek(π;X)/Ek−1(π;X) then E(π;X) is stably equivalent to the
wedge

∨
k≥1Dk(π;X) and thus there is a homology isomorphism ([16])

H̃∗(E(π;X);F) ∼=
⊕
k

H̃∗(Dk(π;X);F)

Let M be a G-space and consider the Borel fibration λ : EG×GM →
BG with fibre M . There are homeomorphisms

E(λ, k) ∼= EG×G Fk(M), E(λ, k)/Σk
∼= EG×G Fk(M)/Σk

and so E(π, k), E(π, k)/Σk are bundle-generalizations of Borel construc-
tions and they are used for (co)homology calculations for mapping class
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groups. It is also convenient to consider the Borel construction for la-
belled configuration spaces and so we have a homeomorphism

E(λ;X) ∼= EG×G C(M ;X)

where the G-action on C(M ;X) is induced from that on M . This
homeomorphism is compatible with filtrations in the sense that there
is an induced homeomorphism Ek(λ;X) ∼= EG ×G Ck(M ;X), where
Ck(M ;X) is the k-th filtration of C(M ;X). Moreover, for the singular
chain complex S∗(X) we have a homology isomorphism H∗(X;F) ∼=
S∗(X); in particular, there is an isomorphism

S∗(E(η; k))⊗Σk
H∗(X)⊗k ∼= S∗(E(η; k)×Σk

Xk)

If X(k) denotes the k-fold smash product of X then we get

S∗(E(η; k))⊗Σk
H∗(X)⊗k ∼= S∗(

E(η; k)×Σk
X(k)

E(η; k)×Σk
∗

) ∼= S∗(Dk(η;X))

Recall that for a graded vector space V over the a field F there exists
a bouquet of spheres SV such that V = H̃∗(SV ;F). Let X = SV to get
S∗(E(η; k))⊗Σk

V ⊗k ∼= S∗(Dk(η;SV )); that is

(5) H∗(E(η, k);V ⊗k) ∼= H̃∗(Dk(η;SV );F)

Note that the symmetric group Σk acts on V ⊗k by permutation with
the usual sign conventions. From this, it follows that if V is a copy of F
concentrated in even degrees then V ⊗k is the trivial FΣk-module. On
the other hand, if V is concentrated in odd degrees, then V ⊗k is a copy
of the sign representation.

The isomorphism (5) above will be used through the next sections
for the bundle BSO(n) → BSO(n + 1) with fibre Sn, induced by the
inclusion SO(n) ⊂ SO(n+ 1).

5 Cohomology of mapping class groups

There are many motivations for considering the (co)homology of map-
ping class groups but from a homotopical point of view the main moti-
vation is that for g > 2 it turns out that BTop+(Sg) is the classifying
space of Γ(Sg) and thus characteristic classes of Sg-bundles are classes
in H∗(Γ(Sg);Z) ([57]).

In this section we collect the material concerning the spaces C(M ;X)
and E(η;X) related to cohomological calculations for mapping class
groups of surfaces with marked points.
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5.1 The mapping class group of the sphere with marked
points

It is a classical result ([28]) that for k ≥ 3, there is a homeomorphism
Fk(S

2) = SO(3) × Fk−3(S2\Q3) and thus Fk(S
2) is never a K(π, 1).

The Eilenberg-Mac Lane space K(π, 1) is given by the Borel construc-
tion (1) given in Section 2: for k ≥ 3, this space is a K(Γk, 1) space
([17]). Considering the SO(3)-action on S2 by rotations there is an
induced diagonal action on Fk(S

2)/Σk. Moreover, since the inclusions
SO(3) ⊂ Diff+(S2) ⊂ Top+(S2) are homotopy equivalences ([63]) the
Borel construction mentioned above is homotopy equivalent to

ESO(3)×SO(3) Fk(S
2)/Σk

This space can be stated in terms of the combinatorial models given
in the last section. For the bundle η : BSO(2) → BSO(3) with fiber
S2 and k ≥ 3 the space E(η, k)/Σk is K(Γk, 1) ([9]); if k = 0, 1, 2 the
spaces are not K(π, 1) and are exceptional. Thus one has, for k ≥ 3, an
isomorphism H∗(Γk;R) ∼= H∗(E(η, k)/Σk;R) for a trivial Γk-module R.
Moreover, from the isomorphism (5) on the last section we have

H∗(Γ
k;F) ∼= H̃∗+2qk(Dk(η;S2q);F)(6)

H∗(Γ
k;F(±1)) ∼= H̃∗+(2q+1)k(Dk(η;S2q+1);F)(7)

These isomorphisms are considered in [9] for giving the mod-2, mod-
p cohomology as also for coefficients in the sign representation. In what
follows we recall the methods considered there. First consider the ho-
motopy equivalence (2) for M = Sn and G = SO(n) to get

ESO(n)×SO(n) C(Sn; ΣX) ' ESO(n)×SO(n) Γ(Sn; ΣX)

The left side is simply the space E(η; ΣX) with BSO(n)
η−→ BSO(n+1)

and thus we get a homotopy equivalence

E(η,ΣX) ' ESO(n)×SO(n) ΛnΣn+1X

which leads to an analysis of the cohomology of labelled spaces E(η;X),
paying special attention in the case when the space X is a sphere as it
is the main tool for calculations.

In the case of mod-2 coefficients one first considers the bundle η
above and the induced fibration on bundle-configurations

(8) C(Sn;Sq) ' ΛnSn+q −→ E(η;Sq) −→ BSO(n+ 1)
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In order to analize the fiber one considers the fibration ΩnSn+q →
ΛnSn+q → Sn+q whose mod-2 spectral sequence collapses giving the
isomorphism

H∗(ΛnSn+q;F2) ∼= H∗(Sn+q;F2)⊗H∗(ΩnSn+q;F2)

where the second factor on the right can be described from duals of
Araki-Kudo-Dyer-Lashof operations as H∗(ΩnSn+q;F2) = H∗(Sq;F2)⊗
Bn,q, where Bn,q is the exterior algebra given as the kernel of

H∗(ΩnSn+q;F2) −→ H∗(Sq;F2)

With this description, the E2-term of the spectral sequence of the fibra-
tion (8) has the form

E∗,∗2 = H∗(BSO(n+ 1);F2)⊗H∗(Sn+q;F2)⊗H∗(Sq;F2)⊗Bn,q

converging to H∗(E(η;Sq);F2). All the differentials for this spectral se-
quence are described in [9] and it turns out that there is an isomorphism
of H∗(BSO(n+ 1);F2)-modules

H∗(E(η;Sq);F2) ∼= [H∗(BSO(n+ 1);F2)⊗ (Bn,q ⊕ xqxq+nBn,q)]⊕
[H∗(BSO(n);F2)⊗ xqBn,q]

Now, specializing to case of the bundle η : BSO(2) → BSO(3) we
get that for k ≥ 2, there is an isomorphism of H∗(BSO(3);F2)-modules

H∗(Γ2k;F2) ∼= H∗(BSO(3);F2)⊗H∗(F2k(S
2)/Σ2k;F2),

where the mod-2 cohomology of F2k(S
2)/Σ2k is isomorphic to

H∗(B2k;F2)⊕H∗−2(B2k−2;F2) as vector spaces (see Section 3.1 above).
For a number odd of points the isomorphism has the form

H∗(Γ2k−1;F2) ∼= H∗(BSO(2);F2)⊗H∗(B2k−2;F2).

for 2k − 1 ≥ 3 with anomalies for 2k − 1 = 1.

Let p be an odd prime and consider the sign representation Fp(±1)
as a trivial Γk-module. From the first comments on this section the
homologyH∗(Γ

k;Fp(±1)) is isomorphic to H̃∗+k(2q+1)(Dk(η;S2q+1);Fp),
for η given as above. In this new setting the Serre spectral sequence of
the bundle (8)

C(S2;S2q−1) −→ E(η;S2q−1) −→ BSO(3)
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collapses with mod-p coefficients. From this and the fact that the mod-
p cohomology of BSO(3) is that of BS3 we get the isomorphism of
H∗(BS3;Fp)-modules

H∗(E(η;S2q−1);Fp) ∼= H∗(BS3;Fp)⊗H∗(Λ2S2q+1;Fp)

Considering the dual isomorphism in homology and noting this preserves
filtration one gets the isomorphism of vector spaces

H̃∗(Dk(η;S2q−1);Fp) ∼= H∗(BS
3;Fp)⊗ H̃∗(Dk(S

2;S2q−1);Fp).

Moreover, for k ≥ 3 there is an isomorphism

H∗(Γ
k;Fp(±1)) ∼=

⊗
q

Hq(BS
3)⊗ H̃∗−1−k(2q−1)(Dk(S

2;S2q−1);Fp)

If p − 1 ≥ k ≥ 3 then H∗(Γ
k;Fp(±1)) is trivial. The cases when k = p

and k = p+ 1 are also considered, see Corollary 9.2 in [9].

Let p be an odd prime and consider Fp as a trivial Γk-module. Since
Γ3 is isomorphic to Σ3, the symmetric group on 3 letters, one has for
p > 3

H∗(Γ3;Fp) ∼=

{
Fp, ∗ = 0

0, ∗ > 0

Now, if p = 3 then H∗(Γ3;Fp) ∼= Λ[u] ⊗ Fp[v], for generators u, v of
degrees 3 and 4, respectively ([1]).

As before consider the fibration C(S2;S2q)→ E(η;S2q)→ BSO(3).
Since its Serre spectral sequence collapses with mod-3 coefficients we
get an isomorphism of H∗(BS3;F3)-modules

H∗(E(η;S2q);F3) ∼= H∗(BS3;F3)⊗H∗(Λ2S2q+2;F3)

Considering the dual isomorphism in homology and noting this pre-
serves filtration one gets the isomorphism of vector spaces

H̃∗(Dk(η;S2q);F3) ∼= H∗(BS
3;F3)⊗ H̃∗(Dk(S

2;S2q);F3).

Moreover, from the isomorphism H∗(Γ
k;F3) ∼= H̃∗+2qk(Dk(η;S2q);F3)

one finally gets

H∗(Γ
k;F3) ∼=

⊗
q

Hq(BS
3;F3)⊗ H̃∗−1−2kq(Dk(S

2;S2q);F3)
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From this expression the Euler-Poincaré series for the mod-3 homology
of Γk can be obtained (see [9], p.16). Moreover, these results agree with
previous calculations made in [2].

For p ≥ 5 the answers are not clean as one might want. As before, the
answers come from the analysis of the spectral sequence of the fibration

C(S2;S2q)→ E(η;S2q)→ BSO(3)

which has a single non-zero differential. This analysis involves the device
of stable Hopf invariants for showing that certain homology classes for
Ω2S2q+2 have non-trivial image in the homology of E(η;S2q). At the
end, the cohomology of E(η;S2q) is given in terms of two vector spaces
A2q, U2q defined from the cohomology of the cochain complex V2q, which
is isomorphic as an algebra to the product H∗(S2q+2)⊗H∗(ΩS2q+1)⊗
H∗(S4q+1). See Section 8 in [9] for more details.

5.2 Applications to the genus two mapping class group

The above methods apply to give the precise cohomology of the genus
two mapping class group as follows. There is the classic short exact
sequence due to Bergau-Mennicke ([3]), and Birman-Hilden ([7])

1→ Z/2Z→ Γ2 → Γ6 → 1.

which is gotten from applying the fundamental group to a natural bun-
dle analogous to the ones above. This bundle is “twisted” by the hy-
perelliptic involution which is taken into account in two separate steps.

First, let the symmetric group Σk act naturally on Fk(M), by the
sign of a permutation on S1 (thus by multiplication by ±1) and consider
the orbit space Fk(M)×Σk

S1. In order to have an action of the unitary
group U(2) on Fk(S

2)×Σk
S1 we first consider the group S3×S1 acting

on Fk(S
2)× S1 by the recipe

(ρ, α)((z1, · · · , zk), β) = ((ρ(z1), · · · , ρ(zk)), α
2 · β),

where ρ(zi) denotes the projection p : S3 → SO(3) with SO(3) acting
by rotations on S2. The reason for using the action of α as a square
stems from the hyperelliptic involution. Observe that the central Z/2Z
defined by

(−1,−1) ∈ S3 × S1

acts by fixing every point in Fk(S
2)×S1 because −1 ∈ S3 is sent to 1 ∈

SO(3), and (−1)2 = 1 ∈ S1. Thus the action of S3×S1 on Fk(S
2)×S1
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descends to an action of the central product S3 ×Z/2Z S
1 = U(2) on

Fk(S
2)×Σk

S1. Form the Borel construction

EU(2)×U(2) Fk(S
2)×Σk

S1.

If k = 6, then this space is a K(π, 1) where π = Γ2. In addition, if k ≥ 3,
the space is a K(π, 1), where π is the centralizer of the hyperelliptic
involution for all k = 2t ≥ 2. Moreover, there is a fibration

EU(2)×U(2) Fk(S
2)×Σk

S1 −→ ESO(3)×SO(3) Fk(S
2)/Σk,

induced by the natural map U(2) → SO(3) with fibre RP∞, realiz-
ing the exact sequence of Birman-Hilden/Bergau-Mennicke above. The
cohomology of these spaces are then worked out via classical methods.

For example, the 2-torsion in the integral cohomology of Γ2 has
a direct summand of Z/8 occurring in all strictly positive dimensions
which are multiples of 4 while the remaining 2-torsion is all of order
exactly 2. Furthermore, the mod-2 cohomology is closely tied to the
Brown-Gitler spectra ([17]).

A curious point about classifying spaces arises in this setting. Name-
ly, the above constructions give a map

BΓ2 −→ BU(2)

which induces an epimorphism in mod-2 homology. However it is not
hard to check that this map is not induced by a homomorphism

Γ2 −→ U(2).

Observe that U(2) is the maximal compact subgroup of Sp(4,R). Thus
it is possible that this fibration is induced by the natural homomorphism

Γ2 −→ Sp(4,R)

to give a map on the level of classifying spaces BΓ2 → BSp(4,R).

Some related results have been produced in work by D. Petersen [59].
For example, Petersen was able to work out the rational cohomology
of the genus two mapping class group with coefficients in the exterior
powers of the defining 4-dimensional symplectic representation. Other
related interesting work is given in [61] as well as joint work with O.
Tommasi [60] for genus 0 and 2 surfaces with marked points.
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5.3 The pointed mapping class group of T 2

The pointed mapping class group is the group Γk,∗g of path-components
in Top+(Sg; k, ∗), the group of pointed, orientation-preserving homeo-
morphism of Sg which leaves a chosen point ∗ fixed and leaves a set Qk
invariant.

For g = 1 and k ≥ 2, the construction (1) is a K(Γk1, 1) space. For
T 2 = S1×S1 one has an isomorphism Γ1

∼= SL(2,Z) given by the action
on H1(T 2) of any homeomorphism of T 2. The inclusion T 2 ⊂ Diff0(T 2)
is a homotopy equivalence ([25]) and so there is an exact sequence

1 −→ Diff0(T 2) −→ Diff(T 2) −→ SL(2,Z) −→ 1

which is split via the action

SL(2,Z)× T 2 −→ T 2, (M, (u, v)) 7→ (uavb, ucvd)

where M =
( a b
c d

)
, with M ∈ SL(2,Z). Note this action fixes the

point (1, 1) and thus SL(2,Z) acts on T ′ = T 2\(1, 1). This implies that
the action of the fundamental group of BSL(2,Z) on the cohomology
of the fibre in

B(S1 × S1) −→ BDiff(T 2) −→ BSL(2,Z)

is exactly the symmetric powers of the tautological representation of
SL(2,Z). G. Shimura ([64]) worked out the classical ring of modular
forms by working out the cohomology of SL(2,Z) with coefficients in
the symmetric powers of the tautological two dimensional representa-
tion over the reals, exactly the real cohomology of the bundle above.
Subsequently, Furusawa, Tezuka, and Yagita ([31]) worked out the co-
homology of BDiff(S1 × S1) in terms of the ring of modular forms as
this last computation is exactly Shimura’s computation with real coef-
ficients.

The method for working out the homology of the pointed mapping
class group has several features which are described next. Since the ac-
tion of SL(2,Z) on T 2 fixes (1, 1) the group SL(2,Z) acts on the pointed
mapping space map∗(T

2, Sn). As explained above, the cohomology of

ESL(2,Z)×SL(2,Z) map∗(T
2, Sn)

gives the cohomology of the pointed mapping class group with marked
points in case n is even, and the cohomology with coefficients in the sign
representation if n is odd (with a few exceptions for 0, and 1 punctures).
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The cohomology groups of map∗(T
2, S2t+1), namely, n odd, follows

directly as was described above. In this case, the rational cohomology
is

E[a]⊗Q[x1, x2]

where |a| = 2t− 1, and |xi| = 2t arising from the natural fibration

map∗(T
2, S2t+1) −→ Ω(S2t+1)2

with fibre Ω2S2t+1. The spectral sequence of the fibration

ESL(2,Z)×SL(2,Z) map∗(T
2, Sn) −→ BSL(2,Z)

collapses, and the resulting answer looks like a direct sum of 2 copies of
the results of Shimura’s computation with degree shifts. More precisely,
the vector space M0

2n denotes the vector space of modular cusp forms of
weight 2n (using Shimura’s weight convention) based on the standard
SL(2,Z)-action on the upper 1

2 -plane H.

Recall that R(±1) denotes the sign representation. The main result
here is that if k ≥ 2, then

H i(Γk,∗1 ;R(±1)) =


M0

2n+2 ⊕ R, if k = 2n, i = 2n+ 1

M0
2n+2 ⊕ R, if k = 2n+ 1, i = 2n+ 1

0, otherwise.

In this setting, the cohomology of the mapping class group with marked
points in the unpointed version Γk1 admits a similar description in case
k ≥ 2 as follows.

H i(Γk1;R(±1)) =


(M0

2n ⊕ R)⊕ (M0
2n ⊕ R), if k = 2n, i = 2n+ 1

M0
2n+2 ⊕ R, if k = 2n+ 1, i = 2n+ 1

M0
2n+2 ⊕ R, if k = 2n+ 1, i = 2n+ 3

0 otherwise.

On the other hand, the case of the trivial representation takes more
work stemming from the fact that the cohomology of the pointed map-
ping space map∗(T

2, S2t) supports an unpleasant differential in the co-
homology Serre spectral sequence from the “fibre” to the “middle of
the spectral sequence”. Keeping track of the answers gives a more in-
tricate result depending on choices of certain partitions. However, the
answers stabilize in the following sense: fix the homological dimension,
and let the number of punctures increase, then the limit of these groups
stabilize with the following simple answer.
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1. H4j(Γk,∗1 ;R) for j ≥ 0:

(a) H0(Γk,∗1 ;R) = R, for all k ≥ 0.

(b) If k ≥ 4j with j > 1 , then H4j(Γk,∗1 ;R) is isomorphic to

(M0
2j+2 ⊕ R)⊕ (M0

2j ⊕ R)⊕ (M0
2j ⊕ R).

2. H4j+1(Γk,∗1 ;R) for j > 0:

(a) If k ≥ 8j + 5, for j ≥ 1, then H4j+1(Γk,∗1 ;R) is isomorphic to

(M0
2j+2 ⊕ R)⊕ (M0

4j+4 ⊕ R)⊕ (M0
4j+2 ⊕ R)

3. H4j+2(Γk,∗1 ;R) for j ≥ 0:

(a) If j ≥ 0 then this group is 0.

4. H4j+3(Γk,∗1 ;R) for j > 0:

(a) If k ≥ 8j + 9, for j ≥ 1, then H4j+3(Γk,∗1 ;R) is isomorphic to

(M0
4j+6 ⊕ R)⊕ (M0

4j+4 ⊕ R).

The ranks of these groups are sometimes given by ranks of Jacobi
forms as computed by Eichler and Zagier ([27]) and it is unclear whether
this is an accident. In addition, there is another curious possible “acci-
dent” described next.

The cohomology of the 3-stranded braid group B3 and SL(2,Z) with
coefficients in Z[x1, x2] given by the symmetric powers of the tautological
two dimensional symplectic representation has been worked out. The
integral results are at the interface of two seemingly different subjects
([14],[15]).

On one-hand, the torsion free summand of the integer cohomology
corresponds to the ring of modular forms as calculated by Shimura [64],
and described above. On the other hand, the p-torsion summand is
given in terms of the cohomology of “Anick fibrations” which have been
used to bound the order of the p-torsion in the homotopy groups of
spheres for p > 3.
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5.4 Genus g ≥ 2 surfaces

The above methods admit a framework to surfaces for genus greater
than 1 which is explained in this section, but with far fewer results.

Consider the projection map

EDiff(S)×Diff(S) Fk(S)/Σk −→ BDiff(S)

with fibre Fk(S)/Σk. The Birman exact sequence

1→ π1Fk(Sg)/Σk −→ Γkg → Γg −→ 1

is obtained by applying the fundamental group to this fibration in case
the genus of Sg is at least 2 with modifications required for genus 0
(k ≥ 3), and 1 (k ≥ 2).

As an aside, consider bundles and stable splittings as above. The
first step here is to describe the orders of natural regular representation
bundles over configuration spaces of surfaces

Fk(S)×Σk
(Rn)k −→ Fk(S)/Σk.

It is known that if S is closed orientable surface, then this bundle has
order exactly 4. Thus the bundle

Fk(S)×Σk
(R4m)k → Fk(S)/Σk

is bundle equivalent to a product bundle, and the Thom space associated
to this bundle is homotopy equivalent to Σ4mkFk(S)/Σk.

In order to handle surfaces of genus g > 1 it is enough to handle

EDiff+(Sg)×Diff+
(Sg)

C(Sg;X)

for X = Sn. That is one setting where the bundles over configuration
spaces are basic. So, in order to extend these methods, the first step is
to identify the Diff+(Sg)-action on the cohomology of C(Sg;S

n).

The mod-2 homology of C(Sg, S
n) is known and is in this paper. If

n = 2q + 1, then the homology of C(Sg, S
2q+1) is known, but this is

computing cohomology of the mapping class groups with marked points
with coefficients in the sign representation. In this case, the rational
homology of C(Sg;S

2n+1) is

E[x2n+1, x2n+3]⊗Q[y1, · · · , y2g]
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where the degree of xi is i, and the degree of yj is 2n. The Diff+(Sg)-
action is given polynomials in the natural 2g-dimensional symplectic
representation.

Thus there is a basic question of the homology of Γg with coefficients
in the symmetric powers of the tautological symplectic representation.
This also occurs in the cohomology without the sign representation. It
is natural to ask whether there is a closer connection to various modular
forms for higher genus.

The case of C(Sg;S
2n) is more complicated and we will try to de-

scribe the results. If n = 1mod(2) then there are fibrations

(9) map∗(Sg, S
2n+2) −→ map(Sg, S

2n+2) −→ S2n+2,

and

(10) Ω2S2n+2 −→ map∗(Sg, S
2n+2) −→ Ω(S2n+2)2g

whose Serre mod-2 homology spectral sequence collapses. Away from 2
first note that an odd sphere is an H-space H-space and thus there are
classical homotopy equivalences

S2n+1 × Ω(S4n+3)→ ΩS2n+2, ΩS2n+1 × Ω2(S4n+3)→ Ω2S2n+2

In characteristic zero there is a homotopy equivalence ΩS2n+1 ×
S4n+1 → Ω2S2n+2 and in characteristic different than 2, the Serre spec-
tral sequence for the fibration (10) above has a non-trivial differential
from E0,4n+1

2n+2 → E4n+2,2n
2n+2 that makes for the complications.

In any case, the representations of the mapping class group which
arise naturally are either the symmetric powers or exterior powers in the
natural 2g-dimensional representation. In this sense, the computations
are similar to genus 1.

6 A taste of stable results

The purpose of this section to draw a short comparison with the beau-
tiful results of Madsen-Weiss [51], S. Galatius [32], and E. Looijenga
[48] concerning similar spaces suitably stabilized.

Consider the affine Grassmannian of oriented flat d-planes in Rn de-
noted AGn,d. These are standard flat planes not necessarily through
the origin. Classically, form the colimit over n with d = 2. Madsen-
Tillmann exhibit a map BΓ∞ → Ω∞0 A

+
∞,2 [52]. Madsen-Weiss prove
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that this map induces an isomorphism in homology with any trivial co-
efficients [51]. One consequence is their proof of Mumford’s conjecture:
stably the rational cohomology is a polynomial ring on generators κi in
degree 2i.

Namely, Madsen-Weiss worked out the homotopy type of the comple-
tion of the classifying space for the stable mapping class group. One of
their beautiful results is that this process gives a familiar space Ω∞0 A

+
∞,2.

A lucid description is given in A. Hatcher’s survey [37]. Galatius calcu-
lated the homology of Ω∞0 A

+
∞,2 with coefficients in a finite field [32].

Ivanov proved ([39]) a stability theorem for the homology of the
mapping class group with coefficients in symmetric powers of certain
symplectic representations. Looijenga was able to use the “hard Lef-
schetz theorem” in conjunction with this stable result to work out the
characteristic zero cohomology of the stable mapping class group with
coefficients in the symmetric powers of the tautological representation
suitably stabilized. Namely, Looijenga worked out the cohomology of
the stable mapping class group with coefficients in the symmetric powers
of the tautological representation.

Analogous, but different results were obtained in work of Ebert-
Randal-Wlliams [26], O. Randal-Williams [62], and N. Kawazumi [41,
42, 43]. Namely, structures arising from symmetric as well as exterior
powers of the tautological representation are recurring in both the sta-
ble, and non-stable settings.

7 The non-orientable setting

Let Ng denote the non-orientable genus g surface. The mapping class
group of Ng with marked points is the group of isotopy classes in
Top(Ng; k), the group of homeomorphisms which leave a set of k points
in Ng invariant, that is N k

g = π0Top(Ng; k). As in the orientable case

there is the pure version PN k
g .

The study of non-orientable mapping class groups parallels the study
of its orientable counterpart. For every non-orientable surfaceNg,n there
is a double cover p : Sg−1,2n → Ng,n which is used to obtain a set of
generators for Ng from that of Γg via symmetric homeomorphisms of
Sg. ([7, 6]). There have been several developments on this issue, in
particular, in [58] L. Paris and B. Szepietowski obtain a finite presen-
tation for Ng,0 and Ng,1, for all g such that g + n > 3. In the stable
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setting, there has been interest in extending results to non-orientable
mapping class groups such as homological stability. After Harer’s sta-
bility for orientable mapping class groups, N. Wahl ([66]) proved that
for g ≥ 4q + 3 the group Hq(Ng,n) is independent of g and n. Later,
this stability property was extended to the case of marked points by E.
Hanbury ([36]) by showing that, for any k ≥ 0, the group Hq(N k

g,n) is
independent of g and n, when g is sufficiently large compared to q.

Recall that a group G of finite virtual cohomological dimension is
periodic if for some d 6= 0 there is an invertible element u ∈ Ĥd(G;Z).
Cup-product with this element gives a periodicity isomorphism

Ĥ i(G;Z) ∼= Ĥ i+d(G;Z).

Similarly, G is p-periodic for a prime p, if the p-primary component
Ĥ∗(G;Z) contains an invertible element of non-zero degree d. Here d
is referred to as the period (p-period) of the group G. It is known that
Γg is 2-periodic for all g > 0 and Γg is p-periodic if and only if g and
p satisfy certain relations which show that p-period depends on g. It
turns out that for marked points Γkg is periodic and the period is always
2 [46]. For the non-orientable mapping class group, it is known that
Ng is p-periodic whenever p is odd and g is not equal to 2 mod p. See
[38], where the double cover mentioned earlier has a special role on the
results. The case with marked points is still open.

Finally, it is worth mentioning that from the theory developed in
the last sections the study of non-orientable mapping class groups with
marked points is concerned with the spaces E(η; k)/Σk and E(η;X), for
a suitably chosen bundle η, given in terms of configuration spaces of the
surface Ng. Moreover, the theory developed so far shows that informa-
tion can be obtained by the study of the labelled space C(Ng;S

k), for
a sphere of even dimension.

8 Final remarks

A recurring theme here is the natural action of the mapping class
group given by the symmetric and exterior powers of the standard sym-
plectic representation. Both in the non-stable and stable cases, the
(co)homology of the mapping class group or braid groups are both in-
teresting and make contact with several parts of mathematics. This
recurring theme is suggestive, but at this writing the authors know very
little about the problem in general.
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