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The stability theorem of persistent homology

Adam Gardner 1

Abstract

Persistence modules – an important tool for understanding ge-
ometric properties of data and the central objects of study in
persistent homology – are collections of vector spaces indexed by
the real numbers together with linear maps satisfying certain ba-
sic properties. Persistence modules appear naturally as families
of homology groups associated to filtrations of topological spaces.
Two equivalent ways to represent a persistence module are by its
persistence diagram – a multiset of points in the Euclidean plane –
and by its barcode – a multiset of real intervals. Under certain as-
sumptions (commonly satisfied in practice), these representations
exist and are unique. One of the main results in the theory of
persistence is the Stability Theorem, which asserts that small per-
turbations of a persistence module result in small perturbations of
its persistence diagram and barcode. In this paper, we review the
evolution of this theorem, with emphasis on the results appearing
in The Structure and Stability of Persistence Modules (Chazal et
al., 2012) and Induced Matchings and the Algebraic Stability of
Persistence Barcodes (Bauer and Lesnick, 2015).
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1 Introduction

Persistent homology, a topological tool for analyzing the global, non-
linear, geometric features of data, is the primary object of study in
topological data analysis. Frequently in science and engineering, data
can be naturally represented as a filtration: namely a collection of
topological spaces Xt with t ∈ R such that Xs ⊂ Xt whenever s ≤ t,
of which the sublevel set filtration Xt := f−1((−∞, t]) for a continous
function f : X → R is a common example. To gain insight into the
structure of such data, one can apply the homology functor F which
takes a topological space X to the vector space Hn(X,k) (with n a
fixed nonnegative integer and k a fixed field), and continuous maps
f : X → Y , to the induced linear maps f∗ : Hn(X,k) → Hn(Y,k). By
the functoriality of F , this yields a collection Mt := Hn(Xt,k) of vector
spaces indexed by R together with linear maps ϕM (s, t) := ι(s, t)∗ :
Ms → Mt, s ≤ t induced by the inclusion maps ι(s, t) : Xs ↪→ Xt such
that

(i) ϕM (s, t) ◦ ϕM (r, s) = ϕM (r, t) whenever r ≤ s ≤ t, and

(ii) ϕM (t, t) = 1Mt ,

where 1Mt : Mt →Mt denotes the identity map. A collection of vector
spaces Mt, t ∈ R with linear maps ϕM (s, t), s ≤ t satisfying (i) and (ii)
is called a persistence module.

In [8], Edelsbrunner, Letscher and Zomorodian introduce the persis−
tence diagram dgm(M) – a multiset of points in the Euclidean plane



The Stability Theorem of Persistent Homology 17

which encodes information about any given persistence module M sat-
isfying certain finiteness (or “tameness”) conditions – and provide a fast
algorithm for computing the persistence diagram when the underlying
topological spaces are finite simplicial complexes in R3. In [3], Carlsson,
Collins, Guibas and Zomorodian introduce the barcode BM – a mul-
tiset of intervals (“bars”) which encodes nearly identical (but slightly
finer) information.

When analyzing real-world data, uncertainties in the data provided
are bound to appear, whether this is due to measurement errors, dis-
cretization errors or other sources. Therefore, it is essential to distin-
guish inherent topological features of the data from noise. One way
to quantify these errors is via δ−matchings – a bijection between two
multisets in the Euclidean plane such that the distance between two cor-
responding points is at most δ > 0. The bottleneck distance dB(·, ·)
is the pseudometric on persistence diagrams defined to be the infimum
over all δ > 0 such that there exists a δ-matching of the persistence di-
agrams. A pseudometric dB(·, ·) can be defined similarly for barcodes.

In [6], Cohen-Steiner, Edelsbrunner and Harer study sublevel-set
filtrations Xf of real-valued continuous functions f : X → R on topo-
logical spaces. They show that, under certain mild finiteness (or “tame-
ness”) assumptions, small perturbations of functions produce small per-
turbations in the persistence diagram of the persistence modules with
Mf
t = Hn(Xf

t ,k); specifically, the bottleneck distance between the per-
sistence diagrams of two functions f and g is bounded above by their
distance in the infinity norm: dB

(
dgm(Mf ),dgm(Mg)

)
≤ ||f − g||∞.

This is the first incarnation of the Stability Theorem for persistence
modules.

A δ−interleaving is an approximate isomorphism of persistence
modules, with the error in the approximation quantified by δ. The
interleaving distance dI(·, ·) is the pseudometric on persistence mod-
ules defined to be the infimum over all δ > 0 such that there exists a δ-
interleaving of the persistence modules. By replacing the∞-norm by the
interleaving distance, Chazal, Steiner, Glisse, Guibas and Oudot show in
[4] that the Stability Theorem of [6] holds for persistence modulesM and
N satisfying similar tameness conditions: dB(dgm(M),dgm(N)) ≤
dI(M,N). This version of stability is called the Algebraic Stability
Theorem, as it is a purely algebraic statement. This inequality is
in fact an equality – dB(dgm(M),dgm(N)) = dI(M,N) – a result
known as the Isometry Theorem, which is first proven by Lesnick for
so-called pointwise finite-dimensional (PFD) persistence modules in a
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2011 version of [9]. The inequality dB(dgm(M),dgm(N)) ≥ dI(M,N)
is called the Converse Stability Theorem.

In The Structure and Stability of Persistence Modules [5], Chazal, de
Silva, Glisse, and Oudot provide a comprehensive overview of the the-
ory of persistence. Furthermore, they introduce a more general tameness
condition, called q-tameness, and prove the Algebraic Stability Theorem
and the Converse Stability Theorem for q-tame persistence modules us-
ing rectangle measures, functions defined on rectangles in the Euclidean
plane with properties analogous to measures.

In Induced Matchings and the Algebraic Stability of Persistence Bar-
codes [2], Bauer and Lesnick prove a stronger, explicit version of the Al-
gebraic Stability Theorem: given a δ-interleaving of persistence modules
of finite dimensional vector spaces, they provide an explicit δ-matching
of the respective barcodes.

The current paper will survey these last two papers, focusing on the
background and results necessary to prove the Algebraic Stability The-
orem (Theorem 3.5.2) and the Converse Stability Theorem (Theorem
2.3.14).

2 The Structure and Stability of Persistence
Modules

The following section draws primarily from the exposition of Chazal, de
Silva, Glisse and Oudot in The Structure and Stability of Persistence
Modules[5]. Some of the notation comes from Bauer and Lesnick[2],
and several theorems and definitions first appear in earlier works such
as Cohen-Steiner et al.[8] (in which the definition of the persistence di-
agram first appears).

All vector spaces shall be over a fixed field k.

Definition 2.0.1. Recall from the introduction that a persistence
module M is a collection of vector spaces Mt for t ∈ R together with
a collection of linear maps ϕM (s, t) : Ms → Mt for every s ≤ t – called
transition maps – satisfying the composition law

ϕM (s, t) ◦ ϕM (r, s) = ϕM (r, t)

whenever r ≤ s ≤ t and such that ϕM (t, t) : Mt →Mt is the identity for
every t ∈ R. M is said to be pointwise finite-dimensional (PFD) if
each vector space Mt is finite-dimensional.
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Let R = (R,≤) be the category with objects t ∈ R and a unique
morphism s→ t whenever s ≤ t. This leads to an equivalent definition
of a persistence module:

Definition 2.0.2. A persistence module M is a functor M : R→ Vect
from the category R = (R,≤) to the category Vect of vector spaces over
k. A PFD persistence module M over R is a functor M : R → vect
from the category R = (R,≤) to the category vect of finite-dimensional
vector spaces over k.

Definition 2.0.3. A morphism f : M → N between two persistence
modules M and N is a collection of linear maps

ft : Mt → Nt, t ∈ R

such that the following diagram commutes whenever s ≤ t:

Ms Mt

Ns Nt

ϕM (s,t)

fs ft

ϕN (s,t)

The composition of morphisms f : M → N and g : N → P is the
pointwise composition (g ◦ f)t = gt ◦ ft. This is clearly associative
with identity morphism 1M : M → M equal pointwise to the identity
(1M )t = 1Mt : Mt →Mt.

Remark 2.0.4. In categorical terminology, a morphism f : M → N is
a natural transformation between the functors M,N : R→ Vect.

Remark 2.0.5. The collection of all persistence models together with
morphisms as defined above forms a category, denoted by VectR. This
category contains kernels, images and direct sums (categorical coprod-
ucts). We construct the direct sum of persistence modules below.

Definition 2.0.6. Let M and N be persistence modules. The direct
sum of M and N , denoted by P = M ⊕ N , is the persistence module
with vector spaces

Pt = Mt ⊕Nt

and linear maps
ϕP (s, t) = ϕM (s, t)⊕ ϕN (s, t)

from Ps to Pt whenever s ≤ t.
For a collection of persistence modules {Pk | k ∈ K}, the direct sum

P =
⊕
k∈K

Pk is defined analogously.
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Remark 2.0.7. The reader may check that projection maps πM : M ⊕
N →M and πN : M ⊕N → N , defined pointwise by (πM )t(v ⊕w) = v
and (πN )t(v⊕w) = w for v ∈Mt, w ∈ Nt, are morphisms of persistence
modules. Similarly, the pointwise inclusions ιM : M →M ⊕N and ιN :
N → M ⊕N are morphisms (in fact these are the canonical injections
from the definition of a categorical coproduct).

2.1 Decomposable Persistence Modules

We say that I ⊂ R is an interval if I is non-empty and r, t ∈ I implies
s ∈ I whenever r ≤ s ≤ t.

Definition 2.1.1. Let I ⊂ R be an interval. The interval module
corresponding to I, denoted by C(I), is the persistence module with
vector spaces

C(I)t =

{
k if t ∈ I
0 otherwise,

and transition maps

ϕC(I)(s, t) =

{
1k if s, t ∈ I
0 otherwise

from C(I)s to C(I)t whenever s ≤ t. Given a persistence module M ,
we will refer to a submodule N ⊂ M which is isomorphic to C(I) as
an interval submodule of M , or more specifically an I-submodule
of M .

A persistence module M is said to be decomposable if M is iso-
morphic to a direct sum of interval modules:

M ∼=
⊕
k∈K

C(Ik)

where each Ik ⊂ R is an interval.

In general, there may be repeated intervals in a direct sum decom-
position, i.e. intervals Ik = Ik′ with k 6= k′. It is therefore convenient to
introduce the notion of a multiset:

Definition 2.1.2. A multiset is a pair A = (S,m) where S is a set
and m : S → N is a multiplicity function from S to the positive integers
N. Intuitively, m(s) is the number of copies of s ∈ S appearing in the
multiset A. The representation Rep(A) of the multiset A is the set

Rep(A) = {(s, n) | s ∈ S, n ∈ N, n ≤ m(s), }.
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Remark 2.1.3. More generally, we may allow m : S → Card to take
values in the proper class of cardinal numbers.

Throughout this paper, we often work with a collection of elements
Ik of some set indexed by k ∈ K (for example, see the decomposable
module M in Definition 2.1.1). Let A = (S,m) be the multiset with

S = {Ik | k ∈ K}

and multiplicity function

m(I) =
∣∣{k ∈ K | Ik = I}

∣∣, I ∈ S.

In this case, we shall use double curly brackets

{{Ik | k ∈ K}} := Rep(A)

to denote the representation of A.

Given a decomposition of a persistence module into a direct sum of
interval modules, it is natural to ask if this decomposition is unique.
Theorem 2.1.4 answers this question affirmatively:

Theorem 2.1.4 (Unique Decomposition Theorem). Let

M =
⊕
k∈K

P Ik =
⊕
l∈L

QJl

where the P Ik , k ∈ K and QJl, l ∈ L are respectively Ik- and Jl-
submodules of M . Then {{Ik | k ∈ K}} = {{Jl | l ∈ L}}.

As observed in Chazal et al.[5](Theorem 1.3), this is a corollary of
Azumaya[1](Theorem 1). We present another proof below.

Let s ∈ R and let I ⊂ R be an interval. We say that s > I if s > t
for every t ∈ I, and s < I if s < t for every t ∈ I.

Lemma 2.1.5. Let I, J ⊂ R be intervals.

(i) Every morphism f : C(I)→ C(J) is of the form

ft =

{
a · 1k if t ∈ I ∩ J
0 otherwise

for some a ∈ k.
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(ii) If there exist nonzero morphisms f : C(I)→ C(J) and g : C(J)→
C(I), then I = J .

Proof. If t 6∈ I ∩J then either C(I)t = 0 or C(J)t = 0, so clearly ft = 0.
If t ∈ I ∩ J , then since the only linear maps k → k are multiplication
by a scalar, ft = at · 1k for some at ∈ k. If s, t ∈ I ∩ J with s ≤ t then
as = at = a by the commutativity of the following diagram:

C(I)s C(I)t

C(J)s C(J)t

1k

as·1k at·1k

1k

This proves Part (i).
For Part (ii), use Part (i) to write

ft =

{
a · 1k if t ∈ I ∩ J
0 otherwise

and

gt =

{
b · 1k if t ∈ I ∩ J
0 otherwise.

Suppose I 6= J , and suppose without loss of generality that there exists
some t ∈ I\J . Then either t > J or t < J . If t > J then s < t for every
s ∈ I ∩ J . By the commutativity of the diagram

C(I)s C(I)t

C(J)s C(J)t = 0

C(I)s C(I)t

1k

a·1k 0

0

b·1k 0

1k

we must have ab = 0, which is equivalent to f = 0 or g = 0. The case
when t < J is similar.

Proof of the Unique Decomposition Theorem. Fix any interval K of R
and consider the submodules P andQ which are direct sums respectively
of all P Ik such that Ik = K, or all QJl such that Jl = K. It suffices to
show that dim(P )t = dim(Q)t for all t ∈ R.
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Let V = ⊕k∈K,Ik 6=KP Ik so M = V ⊕ P , and similarly define W so
M = W ⊕ Q. Let πV , πP , πW and πQ be projections onto the direct
summands V , P , W and Q respectively. While it is not in general
true that P=Q, we will show that projection of either P or Q into
the other is a monomorphism. The identity on M can be decomposed
as 1M = πW + πQ, and so 1P = πP |P = πP ◦ (πW + πQ)|P . Let
g := πP ◦ πW . We claim P ⊂ ker g so 1P = πP ◦ πQ|P . Indeed, πW
can be further decomposed as a sum of projection morphisms into each
of the interval submodules QJl , l ∈ L, Jl 6= K, and so for any Ik = K,
g|P Ik is a sum of morphisms from the K-submodule P Ik to itself, each
factoring through a Jl-interval submodule, l ∈ L, Jl 6= K; by Lemma
10(ii) such morphisms are trivial. Thus, 1P = πP ◦ πQ|P and it follows
that dimPt = dimπQ(P )t ≤ dimQt, ∀t ∈ R. The analogous argument
with roles of P and Q reversed gives dimQt ≤ dimPt.

Remark 2.1.6. Theorem 2.1.4 does not guarantee that all persistence
modules are decomposable, but merely that if a decomposition exists, it
is unique. However, the following theorem guarantees that a large class
of persistence modules are decomposable:

Theorem 2.1.7. Every pointwise finite-dimensional (PFD) persistence
module is decomposable.

The proof, which is beyond the scope of this paper, appears in [7]
(Theorem 1.1).

2.2 Interleaving

Let M and N be persistence modules, and let δ ≥ 0. Following the
notation of Bauer and Lesnick in [2], we define M(δ) to be the persis-
tence module with vector spaces M(δ)t = Mt+δ and transition maps
ϕM(δ)(s, t) = ϕM (s+ δ, t+ δ) for s ≤ t. Given a morphism f : M → N ,
we define the morphism f(δ) : M(δ)→ N(δ) by f(δ)t = ft+δ.

Definition 2.2.1. The δ−shift functor (δ)(·) : VectR → VectR is
the functor sending a persistence module M to M(δ) and a morphism
f : M → N to f(δ) : M(δ)→ N(δ).

Remark 2.2.2. For δ > 0 and a, b ∈ R with a < b, we have C
(
[a, b]

)
(δ) =

C
(
[a − δ, b − δ]

)
. More generally, if M ∼=

⊕
k∈K

C(Ik) then M(δ) ∼=⊕
k∈K

C(Ik(δ)), where Ik(δ) is the interval Ik with its endpoints shifted to

the left by δ.
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Definition 2.2.3. Let M be a persistence module. For any real number
ε ≥ 0, the transition maps of M define a canonical morphism ϕεM : M →
M(ε) called the ε− transition morphism:

(ϕεM )t = ϕM (t, t+ ε)

for every t ∈ R.

Remark 2.2.4. ϕεM is a morphism because the diagram

Ms Mt

Ms+ε Mt+ε

ϕM (s,t)

ϕM (s,s+ε) ϕM (t,t+ε)

ϕM (s+ε,t+ε)

commutes whenever s ≤ t by the definition of a persistence module.

Definition 2.2.5. Two persistence modules M and N are said to be δ
−interleaved if there are morphisms f : M → N(δ) and g : N →M(δ)
such that g(δ) ◦ f = ϕ2δ

M and f(δ) ◦ g = ϕ2δ
N . More explicitly, we require

that the diagrams

Ms Mt

Ns+δ Nt+δ

ϕM (s,t)

fs ft

ϕN (s+δ,t+δ)

Ms−δ Ms+δ

Ns

fs−δ

ϕM (s−δ,s+δ)

gs

Ns Nt

Ms+δ Mt+δ

ϕN (s,t)

gs gt

ϕM (s+δ,t+δ)

Ns−δ Ns+δ

Ms

gs−δ

ϕN (s−δ,s+δ)

fs

commute whenever s < t. f and g are then called δ−interleavings,
and f is said to be a δ−inverse of g (and vice-versa).

Remark 2.2.6. A δ-inverse g is not unique in general. For example,
let M and N be any two persistence module such that ϕM (t, t+ 2δ) =
0 : Mt → Mt+2δ and ϕN (t, t + 2δ) = 0 : Nt → Nt+2δ for all t ∈ R
– for instance, M = C([0, δ)) and N = C([p, p + δ0]) with p ∈ R and
0 < δ0 < δ. Then M and N are δ-interleaved, where the δ-interleaving
f in Definition 2.2.5 can be taken to be the zero morphism f = 0 : M →
N(δ). We note that any morphism g : N →M(δ) is a δ-inverse of f .
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Remark 2.2.7. If two persistence modules M and N are δ-interleaved,
then they are ε-interleaved for every ε ≥ δ. Indeed, if f : M → N(δ)
is a δ-interleaving with δ-inverse g : N → M(δ), then the composition
f(ε− δ) ◦ ϕε−δM is an ε-interleaving with ε-inverse g(ε− δ) ◦ ϕε−δN , which

can be easily seen by observing that f(ε − δ) ◦ ϕε−δM = ϕε−δN (δ) ◦ f and

g(ε− δ) ◦ ϕε−δN = ϕε−δM (δ) ◦ g.

Remark 2.2.8. Let M , N and P be persistence modules. If M and N
are δ1-interleaved, and N and P are δ2-interleaved, then M and P are
(δ1+δ2)-interleaved. Indeed, if f1 : M → N(δ1) is a δ1-interleaving with
δ1-inverse g1 : N → M(δ1), and if f2 : N → P (δ2) is a δ2-interleaving
with δ2-inverse g2 : P → N(δ2), then the composition f = f2(δ1) ◦
f1 : M → P (δ1 + δ2) is a (δ1 + δ2)-interleaving with (δ1 + δ2)-inverse
g = g1(δ2) ◦ g2 : P →M(δ1 + δ2).

Definition 2.2.9. The interleaving distance dI(·, ·) between two per-
sistence modules M and N is the infimum over all non-negative real
numbers such that M and N are δ-interleaved:

dI(M,N) = inf{δ ≥ 0 | there exists a δ-interleaving between M and N}

Lemma 2.2.10. The interleaving distance satisfies the triangle inequal-
ity: for any three persistence modules M , N and P , we have

dI(M,P ) ≤ dI(M,N) + dI(N,P ).

Proof. By Remark 2.2.8, if M and N are δ1-interleaved and N and P
are δ2-interleaved, then M and P are (δ1 + δ2)-interleaved. The result
follows by taking the infimum over all such δ1 and δ2.

Proposition 2.2.11. Let M =
⊕
j∈J

Mj and let N =
⊕
j∈J

Nj (with the

same indexing set J ). Then

dI(M,N) ≤ sup
j∈J

dI(Mj , Nj).

Proof. If for every j ∈ J there exists an ε-interleaving fj : Mj → Nj(ε),
then f =

⊕
j∈J fj is an ε-interleaving ofM andN , and so dI(M,N) ≤ ε.

Thus by Remark 2.2.7, any upper bound of the interleaving distances
dI(Mj , Nj) must then be an upper bound of dI(M,N); in particular,
this applies to the supremum of the dI(Mj , Nj).
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2.3 Decorated Real Numbers and Persistence Diagrams

We now introduce the notion of decorated real numbers, which simplify
interval notation and play an important role in the approach of [5] and
[2].

Definition 2.3.1. The decorated real numbers, denoted by D, are
the collection of ordered pairs (p,±) with p ∈ R – which we shall denote
henceforth by p±, or p∗ if the “decoration” ∗ ∈ {−,+} is unspecified
– together with ±∞. Ordering {−,+} by setting − < +, we endow
D with the lexicographic order, with −∞ and +∞ the minimum and
maximum elements of the order respectively. Explicitly, p∗ < q∗

′
if and

only if either p < q, or p = q and ∗ = −, ∗′ = +.

Remark 2.3.2. The extended real numbers, denoted by R, are the
real numbers R with the standard order together with a maximal ele-
ment ∞ and a minimal element −∞ (i.e. R = R ∪ {−∞,∞}). The
extended real numbers R can be obtained from the decorated real num-
bers D by “forgetting” the decorations – namely by identifying p+ and
p− with p (p ∈ R).

Remark 2.3.3. We can identify ordered pairs (p∗, q∗) ∈ D × D with
intervals of real numbers whenever p∗ < q∗ as in the following table:

q− q+ ∞
p− [p, q) [p, q] [p,∞)

p+ (p, q) (p, q] (p,∞)

−∞ (−∞, q) (−∞, q] (−∞,∞)

When we refer to the interval corresponding to the ordered pair (p∗, q∗),
we shall use the notation

〈
p∗, q∗

〉
.

Definition 2.3.4. Let M be a decomposable persistence module with

M ∼=
⊕
k∈K

C
(〈
p∗k, q

∗
k

〉)
.

The decorated persistence diagram of M is the multiset of pairs of
decorated real numbers

Dgm(M) = {{(p∗k, q∗k) | k ∈ K}}.

The undecorated persistence diagram of M is the multiset of pairs
of (undecorated, extended) real numbers

dgm(M) = {{(pk, qk) | k ∈ K}}.



The Stability Theorem of Persistent Homology 27

Remark 2.3.5. By Theorem 2.1.4, the (un)decorated persistence di-
agram of a decomposable persistence module does not depend on the
choice of decomposition.

Definition 2.3.6. A function σ is said to be a partial matching be-
tween sets A and B if σ is a bijection between a subset A′ ⊂ A and
a subset B′ ⊂ B. In other words, we say that σ is a partial matching
between A and B if σ is a bijection with dom(σ) ⊂ A and im(σ) ⊂ B.
We write σ : A 9 B to mean “σ is a partial matching between A and
B.” We say that a pair of points a ∈ A and b ∈ B are matched if
a ∈ dom(σ), b ∈ im(σ) and σ(a) = b.

The composition of a partial matching σ1 between A and B and a
partial matching σ2 between B and C is the partial matching

σ2 ◦ σ1 = {(a, c) | ∃b ∈ B such that (a, b) ∈ σ1 and (b, c) ∈ σ2}.

Remark 2.3.7. In [2] (Bauer and Lesnick), the authors refer to partial
matchings simply as matchings. We use terminology partial matching
which appears in [5] (Chazal et al.) to emphasize that only some of the
elements in partially matched sets are matched.

We shall soon define a distance between subsets of the extended
plane R2 using partial matchings, but first we must choose a point-to-
point distance. Let d∞(·, ·) denote the infinity norm on the extended
plane, defined by

d∞
(
(p, q), (r, s)

)
= max{|r − p|, |s− q|}.

Here we extend |r − p| to allow for p or r to be infinite by setting
|r− p| =∞ if one of p or r is infinite and p 6= r, and |r− p| = 0 if p = r
– for instance, we have |∞ − 2| = |∞ − (−∞)| =∞, but |∞ −∞| = 0.

If (p, q) ∈ R2 and S ⊂ R2, let

d∞
(
(p, q), S

)
= inf

(r,s)∈S
d∞
(
(p, q), (r, s)

)
.

In particular, letting

∆ = {(p, q) ∈ R2 | q = p},

denote the diagonal, it is easy to see that

d∞
(
(p, q),∆

)
=

1

2
|q − p|.
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Definition 2.3.8. A partial matching σ between two subsets A and B
of R2 is called a δ−matching if all of the following statements are true:

• if a ∈ A and b ∈ B are matched in σ (i.e. σ(a) = b) then d∞(a, b) ≤
δ;

• if a ∈ A is unmatched in σ (i.e. a 6∈ dom(σ)) then d∞(a,∆) ≤ δ;

• if b ∈ B is unmatched in σ (i.e. b 6∈ im(σ)) then d∞(b,∆) ≤ δ.

We say that A and B are δ−matched if there exists a δ-matching
between A and B.

Remark 2.3.9. Let A,B,C ⊂ R2. If A and B are δ1-matched, and B
and C are δ2-matched, then A and C are (δ1 + δ2)-matched. Indeed, let
σ1 : A9 B be a δ1-matching and let σ2 : B 9 C be a δ2-matching. We
verify that σ = σ2 ◦ σ1 : A9 C is a (δ1 + δ2)-matching:

• If a ∈ A and c ∈ C are matched in σ, then there is some b ∈ B
such that (a, b) ∈ σ1 and (b, c) ∈ σ2, and so

d∞(a, c) ≤ d∞(a, b) + d∞(b, c) ≤ δ1 + δ2.

• If a ∈ A is unmatched in σ, then either a is unmatched in σ1, in
which case

d∞(a,∆) ≤ δ1 ≤ δ1 + δ2;

or a is matched in σ1 to some b ∈ B which is unmatched in σ2, in
which case

d∞(a,∆) ≤ d∞(a, b) + d∞(b,∆) ≤ δ1 + δ2.

• The case of an unmatched point c ∈ C is similar to the previous
case.

Definition 2.3.10. The bottleneck distance dB(·, ·) between two
subsets A and B of R2 is the infimum over all non-negative real numbers
such that A and B are δ-matched:

dB(A,B) = inf{δ ≥ 0 | there exists a δ-matching between A and B}

Lemma 2.3.11. The bottleneck distance satisfies the triangle inequality:
for any three subsets A, B and C of R2, we have

dB(A,C) ≤ dB(A,B) + dB(B,C).
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Proof. By Remark 2.3.9, if A and B are δ1-matched and B and C are
δ2-matched, then A and C are (δ1 + δ2)-matched. The result follows by
taking the infimum over all such δ1 and δ2.

Proposition 2.3.12. Let
〈
p∗, q∗

〉
and

〈
r∗, s∗

〉
be intervals, and let M =

C
(〈
p∗, q∗

〉)
and N = C

(〈
r∗, s∗

〉)
be the corresponding interval modules.

Then

dI(M,N) ≤ d∞((p, q), (r, s)).

Proof. We must show that for every δ > d∞((p, q), (r, s)), M and N are
δ-interleaved. We do this by noting that the maps f : M → N(δ) and
g : N →M(δ) defined by

ft =

{
1k if t ∈

〈
p∗, q∗

〉
∩
〈
r∗ − δ, s∗ − δ

〉
0 otherwise,

and

gt =

{
1k if t ∈

〈
p∗ − δ, q∗ − δ

〉
∩
〈
r∗, s∗

〉
0 otherwise,

provide well-defined δ-inverse δ-interleavings.

Proposition 2.3.13. Let
〈
p∗, q∗

〉
be an interval, and let M = C

(〈
p∗, q∗

〉)
.

Then

dI(M, 0) =
1

2
|q − p| = d∞((p, q),∆).

Proof. The only morphisms to and from the zero module are the zero
maps. Therefore a pair of morphisms f : M → 0(δ) = 0 and g : 0 →
M(δ) are δ-inverse δ-interleavings if and only if ϕ2δ

M = g(δ) ◦ f , which
simplifies to ϕ2δ

M = 0. This last equality holds if 2δ > |q − p| and fails
to hold if 2δ < |q − p|.

Theorem 2.3.14 (The Converse Stability Theorem for Decomposable
Persistence Modules). Let M , N be decomposable persistence modules.
Then

dI(M,N) ≤ dB(dgm(M),dgm(N)).

This theorem is called the Converse Stability Theorem because the
reverse inequality, which was studied first, is true for pointwise finite-
dimensional (PFD) persistence modules:
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Theorem 2.3.15 (The Algebraic Stability Theorem for PFD Persis-
tence Modules). Let M , N be PFD persistence modules. Then

dB(dgm(M),dgm(N)) ≤ dI(M,N).

We shall prove a stronger version of Algebraic Stability Theorem in
Section 3 (see Theorem 3.5.2), following the proof originally appearing
in [2] as Theorem 6.4.

Proof of the Converse Stability Theorem. Let δ ≥ 0, and suppose that
there is a δ-matching σ of dgm(M) and dgm(N). Re-write M and N
in the form

M =
⊕
k∈K

Mk

N =
⊕
k∈K

Nk

where we choose Mk, Nk such that either

• Mk is an Ik-submodule of M and Nk is a Jk-submodule of N ,
where Ik and Jk are a pair of matched intervals;

• Mk is an Ik-submodule of M where Ik is unmatched, and Nk = 0;
or

• Nk is a Jk-submodule of N where Jk is unmatched, and Mk = 0.

By Propositions 2.3.12 and 2.3.13, dI(Mk, Nk) ≤ δ for each of the three
possible cases above. By Proposition 2.2.11, dI(M,N) ≤ δ. The result
follows by taking the infimum over all δ ≥ 0 such that there exists a
δ-matching of dgm(M) and dgm(N).

3 Induced Matchings and the Algebraic Stabil-
ity of Persistence Barcodes

In this section we summarize the results of Bauer and Lesnick from
Induced Matchings and the Algebraic Stability of Persistence Barcodes
[2], following their exposition.
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3.1 Barcodes

Definition 3.1.1. A barcode is (a representation of) a multiset of
intervals (see Definition 2.1.2).

Definition 3.1.2. Let M be a decomposable persistence module with

M ∼=
⊕
k∈K

C
(
Ik
)
.

The barcode of M is the multiset of intervals

BM = {{Ik | k ∈ K}}

Remark 3.1.3. The decorated persistence diagram and the barcode of
a decomposable persistence module M contain exactly the same infor-
mation: in fact, there is a canonical bijection of multisets Dgm(M)→
BM which sends (p∗, q∗) ∈ Dgm(M) to the interval

〈
p∗, q∗

〉
.

Remark 3.1.4. By Theorem 2.1.4, the barcode of a decomposable per-
sistence module does not depend on the choice of decomposition.

Remark 3.1.5. Recall that a persistence module M is pointwise finite-
dimensional (PFD) if Mt is finite- dimensional for every t ∈ R (Defi-
nition 2.0.1), and that every PFD persistence module is decomposable
(Theorem 2.1.7). In particular, to every PFD persistence module M
there corresponds a unique barcode BM .

Remark 3.1.6. The barcode ofM(δ) is simply the barcode ofM shifted
to the left by δ (see Definition 2.2.1 and Remark 2.2.2).

Given a barcode D, we define a new barcode Dε by

Dε = {I ∈ D : [t, t+ ε] ⊂ I for some t ∈ R}.

In words, Dε is the collection of intervals in D of length strictly greater
than ε together with the closed intervals of length ε.

Definition 3.1.7. Let C and D be barcodes. A δ−matching is a
partial matching σ : C 9 D such that

(i) C2δ ⊂ dom(σ),

(ii) D2δ ⊂ im(σ),
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(iii) If σ
(〈
b, d
〉)

=
〈
b′, d′

〉
then〈
b, d
〉
⊂
〈
b′ − δ, d′ + δ

〉〈
b′, d′

〉
⊂
〈
b− δ, d+ δ

〉
.

The bottleneck distance dB(·, ·) between barcodes C and D is the
infimum over all δ ≥ 0 such that C and D are δ-matched:

dB(C,D) = inf{δ ≥ 0 | C and D are δ-matched}.

Remark 3.1.8. IfM andN are persistence modules, then dB(BM ,BN ) =
dB(dgm(M),dgm(N)), which justifies the reuse of the notation dB(·, ·).
Note however that a δ-matching of the barcodes BM and BN is strictly
stronger than a δ-matching of persistence diagrams dgm(M) and dgm(N),
in the sense that if BM and BN are δ-matched then dgm(M) and
dgm(N) are δ-matched, but the converse is not true in general. Roughly
speaking, this is because Definition 2.3.8 does not distinguish between
distinct intervals with identical endpoints, as it “forgets” decorations.

For instance, let M = C
(
[p, q]

)
and N = C

(
(p + δ, q − δ)

)
where

p < q and 0 ≤ 2δ < q − p. Then dgm(M) = {(p, q)} ⊂ R2 and
dgm(N) = {(p+δ, q−δ)} ⊂ R2 are δ-matched (simply match the point
(p, q) with (p+δ, q−δ)). However, BM = {[p, q]} and BN = {(p+δ, q−δ)}
are not δ-matched: indeed, since [p, p + 2δ] ⊂ [p, q], by condition (i) of
Definition 3.1.7 [p, q] must be matched to (p+δ, q−δ) by any δ-matching;
but since [p, q] 6⊂ (p, q), by condition (iii) [p, q] and (p+ δ, q− δ) cannot
be matched.

3.2 Dual Modules

Let Rop = (R,≥) be the opposite category of R, that is the category
with objects t ∈ R and a unique morphism s → t whenever s ≥ t
(instead of whenever s ≤ t). Let Neg : R → Rop denote the functor
which sends a real number t to −t and the morphism s ≤ t to −s ≥ −t.
Let (·)∗ : Vect → Vect denote the duality (contravariant) functor.
Given a persistence module M : R → Vect, taking the duals of all
vector spaces and transition maps gives a functor M † : Rop → Vect.
Define the dual of M to be the persistence module M∗ = M † ◦ Neg :
R → Vect. Explicitly, M∗ has vector spaces (M∗)t = (M−t)

∗ and
transition maps ϕM∗(s, t) = ϕM (−t,−s)∗.

Given a morphism of persistence modules f : M → N , we de-
fine the dual morphism f∗ : N∗ → M∗ by letting (f∗)t = (f−t)

∗.
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With these identifications, dualization is a contravariant endofunctor
(·)∗ : VectR → VectR. When M and N are PFD, under the canonical
identifications M = M∗∗ and N = N∗∗ we have f∗∗ = f .

For a barcode D, let D∗ = {−I : I ∈ D} where we define −I =
{−t : t ∈ I}.

Proposition 3.2.1. If M is a PFD persistence module, then BM∗ =
(BM )∗.

Proof. Without loss of generality, let M =
⊕

I∈BM
C(I). It suffices to

show that M∗ ∼=
⊕

I∈BM
C(−I). We shall prove this in two steps:

(i) If N =
⊕
k∈K

Nk is PFD then N∗ =
⊕
k∈K

N∗k .

(ii) For any interval I ⊂ R, C(I)∗ ∼= C(−I).

For (i), let s ≤ t. Since the N−t and N−s, −t ≤ −s are finite di-
mensional, only finitely many of the terms ϕNk(−t,−s) in ϕN (−t,−s) =⊕
k∈K

ϕNk(−t,−s) are nonzero. Therefore ϕN (−t,−s)∗ =
⊕
k∈K

ϕNk(−t,−s)∗,

i.e. ϕN∗(s, t) =
⊕
k∈K

ϕN∗k (s, t) whenever s ≤ t, which proves the result.

For (ii), observe that

(C(I)∗)t = (C(I)−t)
∗ =

{
k∗, if t ∈ −I
0, otherwise.

Since 1∗k = 1k∗ , the transition maps of C(I∗) are

ϕC(I)∗(s, t) = ϕC(I)(−t,−s)∗ =

{
1k∗ , if s, t ∈ −I
0, otherwise.

The isomorphism k → k∗ sending a ∈ k to a · 1k ∈ k∗ therefore leads
to an isomorphism ft : C(−I)→ C(I)∗:

ft(a) =

{
a · 1k, if t ∈ −I
0, otherwise.

Now applying (i) and (ii) above, we see that

M∗ =
⊕
I∈BM

C(I)∗ ∼=
⊕
I∈BM

C(−I),

as required.
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3.3 The Structure of Persistence Submodules and Quo-
tients

A partially ordered set (S,<) is said to be enumerated if there is an
order-preserving injection S ↪→ N into the positive integers with the
standard order. We may write S = {s1, s2, ...} with s1 < s2 < ... where
this sequence terminates if S is finite.

Given two enumerated sets S = {s1, s2, ...} and T = {t1, t2, ...} with
|S| ≤ |T |, there is a canonical injection αTS : S ↪→ T defined by

αTS (si) = ti.

Remark 3.3.1. If S, T, U are enumerated sets with |S| ≤ |T | ≤ |U |,
then the canonical injections trivially satisfy the composition law

αUS = αUT ◦ αTS .

Let M be a PFD persistence module and let D denote the decorated
real numbers (see Definition 2.3.1). For any b ∈ D, define

〈
b, ·
〉
M

to
be (the representation of) the multiset of intervals I ∈ BM of the form
I =

〈
b, d
〉

for some d ∈ D. Clearly

BM =
∐
b∈D

〈
b, ·
〉
M
.

Order
〈
b, ·
〉
M

by reverse inclusion, so that larger intervals come before

smaller ones. More precisely, let
〈
b, d
〉
k

denote the kth interval of the

form
〈
b, d
〉

in the representation of
〈
b, ·
〉
M

. We say that
〈
b, d
〉
k
<〈

b, d′
〉
k′

if either d > d′, or d = d′ and k < k′.

Remark 3.3.2.
( 〈

b, ·
〉
M
, <

)
is an enumerated set since < defined

above is clearly a total order and the number of predecessors of an
interval

〈
b, d
〉
∈
( 〈
b, ·
〉
M
, <
)

must be finite for M to be PFD.

Dually, define
〈
·, d
〉
M

to be the collection of intervals I ∈ BM of the

form
〈
b, d
〉

for some b ∈ D, so that

BM =
∐
d∈D

〈
·, d
〉
M
.

Ordering distinct intervals by reverse inclusion (and ordering repeated
intervals as above) makes

〈
·, d
〉
M

into an enumerated set. Note that in

this case
〈
b, d
〉
<
〈
b′, d

〉
if b < b′.
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Definition 3.3.3. A morphism j : M → N of persistence modules M
and N is a monomorphism if jt : Mt → Nt is injective for all t ∈ R.

A morphism q : M → N of persistence modules M and N is an
epimorphism if qt : Mt → Nt is surjective for all t ∈ R.

We shall use the notation j : M ↪→ N for monomorphisms and
q : M � N for epimorphisms. The reader may verify that this definition
agrees with the standard categorical definitions of monomorphisms and
epimorphisms in the category VectR of persistence modules.

Theorem 3.3.4 (Structure of Persistence Submodules and Quotients).
Let M and N be PFD persistence modules.

(i) If there is a monomorphism M ↪→ N , then for each d ∈ D∣∣〈·, d〉
M

∣∣ ≤ ∣∣〈·, d〉
N

∣∣
and the union of the canonical injections

〈
·, d
〉
M
↪→
〈
·, d
〉
N

, d ∈ D
defines an injection BM ↪→ BN sending each interval

〈
b, d
〉
∈

BM to an interval
〈
b′, d

〉
with b′ ≤ b (equivalently, with

〈
b′, d

〉
≤〈

b, d
〉
).

(ii) Dually, if there is epimorphism M � N , then for each b ∈ D∣∣〈b, ·〉
M

∣∣ ≥ ∣∣〈b, ·〉
N

∣∣
and the union of the canonical injections

〈
b, ·
〉
M
←↩
〈
b, ·
〉
N

, b ∈ D
defines an injection BM ←↩ BN sending each

〈
b, d
〉
∈ BN to an

interval
〈
b, d′

〉
with d ≤ d′ (equivalently, with

〈
b, d
〉
≥
〈
b, d′

〉
).

Remark 3.3.5. Abusing notation, we shall refer to the injection in part
(i) (resp. (ii)) of Theorem 3.3.4 as the canonical injection BM ↪→ BN
(resp. BM ←↩ BN ) when the conditions of (i) (resp. (ii)) hold.

Informally, the canonical injection in Theorem 3.3.4(i) (resp. (ii))
sends an interval in M (resp. N) to a larger interval in N (resp. M)
with the same right (resp. left) endpoint. Here “larger” means larger in
the sense of length, not in the sense of the partial order we have defined
on intervals – for instance, the interval [0, 2] is “larger” than the interval
[0, 1], but [0, 2] < [0, 1] in the partial order defined above. Note that
these injections are canonical with respect to the representation of BM
and BN , not the multisets BM and BN , since permuting identical inter-
vals in BM without a predefined order would yield an equally sensible
injection.
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For I =
〈
b, d
〉
, define

〈
·, I
〉
M

to be the multiset〈
·, I
〉
M

:= {J =
〈
b′, d

〉
k
∈
〈
·, d
〉
M
|
〈
b′, d

〉
≤ I},

the multiset of predecessors of I in
〈
·, d
〉
M

with respect to reverse in-
clusion.

Lemma 3.3.6. Let I be an interval. If there exists a monomorphism
of PFD persistence modules j : M ↪→ N then∣∣〈·, I〉

M

∣∣ ≤ ∣∣〈·, I〉
N

∣∣.
Proof. Let I =

〈
b, d
〉
. Without loss of generality, assume

M =
⊕
J∈BM

C(J)

N =
⊕
J∈BN

C(J).

Let U ⊂M and V ⊂ N be the submodules

U =
⊕

J∈
〈
·,I
〉
M

C(J)

V =
⊕

J∈
〈
·,I
〉
N

C(J).

Given an interval J , we say that t > J if t > s for every s ∈ J . Since
M and N are PFD, for any s ∈ I there must be finitely many intervals
J ∈ BM ∪ BN with s ∈ J ; it follows that there must be some t ∈ I such
that t >

〈
b′, d′

〉
whenever

〈
b′, d′

〉
∈ BM ∪ BN with b′ ≤ b and d′ < d.

Clearly dim Ut =
∣∣〈·, I〉

M

∣∣ and dim Vt =
∣∣〈·, I〉

N

∣∣.
We claim that jt(Ut) ⊂ Vt. By the choice of t, we have

Ut =
⋂
s∈I
s≤t

imϕM (s, t) ∩
⋂
r>I

ker ϕM (t, r)

Vt =
⋂
s∈I
s≤t

imϕN (s, t) ∩
⋂
r>I

ker ϕN (t, r).
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For each s ∈ I, we have jt(imϕM (s, t)) ⊂ imϕN (s, t) by the commuta-
tivity of the diagram

Ms Mt

Ns Nt

ϕM (s,t)

js jt

ϕN (s,t)

Similarly, jt(ker ϕM (t, r)) ⊂ ker ϕN (t, r) by the commutativity of the
diagram

Mt Mt

Nt Nr

ϕM (t,r)

jt jr

ϕN (t,r)

We conclude that jt(Ut) ⊂ Vt. Since jt is an injection, we have dim Ut ≤
dim Vt, completing the proof.

Proof of Theorem 3.3.4. Suppose that there exists a monomorphismM ↪→
N . To show that

∣∣〈·, d〉
M

∣∣ ≤ ∣∣〈·, d〉
N

∣∣, it suffices to show that if

i ≤
∣∣〈·, d〉

M

∣∣ then i ≤
∣∣〈·, d〉

N

∣∣. Let I =
〈
b, d
〉

denote the ith inter-

val of
〈
·, d
〉
M

. Then for 1 ≤ j ≤ i,
〈
·, I
〉
M

contains the jth interval of〈
·, d
〉
M

and so

i ≤
∣∣〈·, I〉

M

∣∣ ≤ ∣∣〈·, I〉
N

∣∣ ≤ ∣∣〈·, d〉
N

∣∣
where the second inequality follows from Lemma 3.3.6.

Let I ′ =
〈
b′, d

〉
denote the ith interval of

〈
·, d
〉
N

. Then the canonical

injection BM ↪→ BN sends I to I ′. Since i ≤
∣∣〈·, I〉

N

∣∣, we must have

I ′ ∈
〈
·, I
〉
N

or equivalently b′ ≤ b. This completes the proof of part (i).

Part (ii) follows from part (i) by a duality argument. Given an
epimorphism of PFD persistence modules q : M � N , the dual q∗ :
N∗ ↪→ M∗ is a monomorphism. By part (i), q∗ induces an injection
ι : BN∗ ↪→ BM∗ . By Proposition 3.2.1, this in turn induces an injection
BN ↪→ BM by sending I ∈ BN to −ι(−I), which is exactly the canonical
injection. By part (i), we see that I =

〈
b, d
〉

gets sent to I ′ = −
〈
−

d′,−b
〉

=
〈
b, d′

〉
with −d′ ≤ −d, proving part (ii).

3.4 Induced Matchings of Barcodes

Given a morphism of PFD persistence modules f : M → N , we shall
define a partial matching χf : BM 9 BN induced by f .
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We first define this partial matching for monomorphisms and epi-
morphisms. If j : M ↪→ N is a monomorphism, then we define χj :
BM 9 BN to be the canonical injection ι : BM ↪→ BN of Theorem
3.3.4(i). If q : M � N is an epimorphism, then we define χq : BM 9 BN
to be the inverse of the canonical injection ι′ : BN ↪→ BM of Theo-
rem 3.3.4(ii) (namely the unique matching with domain im ι′ such that
χq ◦ ι′ = 1BN ).

In general, if f : M → N is a morphism of PFD persistence modules,
then f factors canonically as

M
qf−−→→ im(f)

jf
↪−→ N.

We define the partial matching χf : BM 9 BN to be the composition
χf = χjf ◦ χqf .

Proposition 3.4.1. Let f : M → N be a morphism of PFD persistence
modules. Suppose χf

(〈
b, d
〉)

=
〈
b′, d′

〉
. Then

b′ ≤ b < d′ ≤ d.

In words, induced matchings shift the endpoints of an interval to the
left.

Proof. By Theorem 3.3.4, we have χqf
(〈
b, d
〉)

=
〈
b, d′

〉
with d′ ≤ d and

χjf
(〈
b, d′

〉)
=
〈
b′, d′

〉
with b′ ≤ b. The middle inequality b < d′ holds

because
〈
b, d′

〉
is an interval.

Proposition 3.4.2. χ is functorial when restricted to the subcategory
of monomorphisms of PFD persistence modules. Dually, χ is functorial
when restricted to the subcategory of epimorphisms of PFD persistence
modules.

Proof. Let j1 : M → N and j2 : N → P be monomorphisms of PFD
persistence modules. By definition, χj1 : BM 9 BN is the disjoint
union of the canonical injections

〈
·, d
〉
M
↪→
〈
·, d
〉
N

, and similarly for
χj2 : BN 9 BP and χj2◦j1 : BM 9 BP . By Remark 3.3.1, it follows
that χj2◦j1 = χj2 ◦ χj1 . Thus χ is functorial when restricted to the
subcategory of monomorphisms in vectR.

The result for epimorphisms follows by essentially the same argu-
ment, together with the fact that the operation of reversing partial
matchings is functorial. Thus χ is functorial when restricted to the
subcategory of epimorphisms in vectR.
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For N a persistence module and ε > 0, we define a submodule N ε

of N by setting
N ε
t = imϕN (t− ε, t)

for all t ∈ R, with transition maps the restriction of ϕN to N ε.

Definition 3.4.3. A persistence module N is said to be ε−trivial if
the ε-transition morphism ϕεN : N → N(ε) is the zero morphism, or
equivalently if N ε = 0.

Theorem 3.4.4 (Induced Matching Theorem). Let f : M → N be a
morphism of PFD persistence modules, and suppose that χf

(〈
b, d
〉)

=〈
b′, d′

〉
. Then

(i) b′ ≤ b < d′ ≤ d.

(ii) If coker(f) = N/im(f) is ε-trivial, then BεN ⊂ im(χf ) and

b′ ≤ b ≤ b′ + ε.

(iii) Dually, if ker(f) is ε-trivial, then BεM ⊂ dom(χf ) and

d− ε ≤ d′ ≤ d.

Proof. Part (i) is exactly Proposition 3.4.4.
Let N ε be as defined immediately before Definition 3.4.3, and recall

that BεN is the collection of intervals in BN containing a closed interval
of length ε. First observe that to obtain BNε , one simply shifts the left
endpoints of intervals in BεN to the right by ε:

BNε = {
〈
b+ ε, d

〉
|
〈
b, d
〉
∈ BεN}.

Next, let jε : N ε ↪→ N be the inclusion map. By the definition
of χjε , we see that χjε

(〈
b + ε, d

〉)
=
〈
b, d
〉

for every
〈
b, d
〉
∈ BεN and

consequently that im(χjε) = BεN .
To prove Part (ii), suppose that coker(f) is ε-trivial. Then N ε ⊂

im(f). (Indeed, this follows because ϕcoker(f)(t − ε, t) = 0 if and only
if imϕN (t − ε, t) ⊂ im(ft).) This implies that the following diagram
commutes, where each map is the inclusion:

N

N ε

im(f)

jε

j

jf
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By Proposition 3.4.2, χjε = χjf ◦ χj . Furthermore, χf = χjf ◦ χqf by
the definition of χf . Hence the following diagram commutes:

BN

BNε BM

Bim(f)

χjε

χj
χqf

χf

χjf

By the commutativity of the left triangle, BεN = im(χjε) ⊂ im(χjf ). By
the definition of the induced partial matchings, im(χjf ) = im(χf ) and
so

BεN ⊂ im(χf ),

as claimed.

To finish the proof of Part (ii), we must show that whenever χf
(〈
b, d
〉)

=〈
b′, d′

〉
the inequality

b′ ≤ b ≤ b′ + ε

holds. The lefthand inequality follows from Part (i), and the righthand
inequality follows by the commutativity of the left triangle as follows.
By the definition of the induced partial matching, we have χjf

(〈
b, d′

〉)
=〈

b′, d′
〉
. Now χjε

(〈
b′ + ε, d′

〉)
=
〈
b′, d′

〉
, so by the commutativity of the

left triangle we have χj
(〈
b′ + ε, d′

〉)
=
〈
b, d′

〉
. The inequality b ≤ b′ + ε

therefore follows by applying Theorem 3.3.4 to the monomorphism j :
N ε ↪→ N .

Finally, the proof of Part (ii) dualizes readily to a proof of Part
(iii).

3.5 An Explicit Formulation of the Algebraic Stability
Theorem

We shall see that the Algebraic Stability Theorem (Theorem 2.3.15
above and the stronger Theorem 3.5.2 below) follows readily from the
Induced Matching Theorem (Theorem 3.4.4).

Lemma 3.5.1. If f : M → N(δ) is a δ-interleaving morphism, then
both ker(f) and coker(f) are 2δ-trivial.



The Stability Theorem of Persistent Homology 41

Proof. By the definition of a δ-interleaving, there exists a morphism
g : N →M(δ) such that

g(δ) ◦ f = ϕ2δ
M

and
f(δ) ◦ g = ϕ2δ

N .

The first equality implies that ker(f) is 2δ-trivial, and the second equal-
ity implies that coker(f) is 2δ-trivial.

For a persistence module N and δ ≥ 0, there is a bijection rδ :
BN(δ) → BN given by rδ

(〈
b, d
〉)

=
〈
b+δ, d+δ

〉
for each interval

〈
b, d
〉
∈

BN(δ).

Theorem 3.5.2 (Explicit Formulation of the Algebraic Stability Theo-
rem). If f : M → N(δ) is a δ-interleaving of PFD persistence modules,
then rδ ◦ χf : BM 9 BN is a δ-matching. In particular,

dB(BM ,BN ) ≤ dI(M,N).

Proof. By Lemma 3.5.1, ker(f) and coker(f) are both 2δ-trivial. By the
Induced Matching Theorem, we have that B2δM ⊂ dom(χf ) and B2δN ⊂
im(χf ). If χf

(〈
b, d
〉)

=
〈
b′, d′

〉
, we have that

b′ ≤ b ≤ b′ + 2δ and d− 2δ ≤ d′ ≤ d,

or equivalently, in terms of the endpoints of rδ ◦χf
(〈
b, d
〉)

=
〈
b′+δ, d′+

δ
〉
,

(b′ + δ)− δ ≤ b ≤ (b′ + δ) + δ and d− δ ≤ (d′ + δ) ≤ d+ δ.

This verifies that rδ ◦ χf is indeed a δ-matching.

Combining Theorem 2.3.14 (The Converse Stability Theorem for
Decomposable Persistence Modules) and 2.1.7 (every PFD persistence
module is decomposable), recalling that dB(BM ,BN ) = dB(dgm(M),dgm(N))
for persistence modules M and N , we see that the inequality of Theorem
3.5.2 is actually an equality:

Theorem 3.5.3 (The Isometry Theorem for PFD Persistence Mod-
ules). If M and N are PFD persistence modules, then

dB(BM ,BN ) = dI(M,N).
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This result concludes our study of persistence modules.
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