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Hochschild homology and cohomology for

involutive A∞-algebras

Ramsès Fernàndez-València 1

Abstract

We present a study of the homological algebra of bimodules over
A∞-algebras endowed with an involution. Furthermore we intro-
duce a derived description of Hochschild homology and cohomol-
ogy for involutive A∞-algebras.
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1 Introduction

Hochschild homology and cohomology are homology and cohomology
theories developed for associative algebras which appears naturally
when one studies its deformation theory. Furthermore, Hochschild ho-
mology plays a central role in topological field theory in order to describe
the closed states part of a topological field theory.

An involutive version of Hochschild homology and cohomology was
developed by Braun in [1] by considering associative and A∞-algebras
endowed with an involution and morphisms which commute with the
involution.

This paper takes a step further with regards to [5]. Whilst in the lat-
ter paper we develop the homological algebra required to give a derived
version of Braun’s involutive Hochschild homology and cohomology for
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University (Wales, United Kingdom) under the supervision of Dr. Jeffrey H. Gian-
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involutive associative algebras, this research is devoted to develop the
machinery required to give a derived description of involutive Hochschild
homology and cohomology for A∞-algebras endowed with an involution.

As in [5], this research has been driven by the author’s research
on Costello’s classification of topological conformal field theories [2],
where he proves that an open 2-dimensional theory is equivalent to a
Calabi-Yau A∞-category. In [4], the author extends the picture to un-
oriented topological conformal field theories, where open theories now
correspond to involutive Calabi-Yau A∞-categories, and the closed state
space of the universal open-closed extension turns out to be the involu-
tive Hochschild chain complex of the open state algebra.

2 Basic concepts

2.1 Coalgebras and bicomodules

An involutive graded coalgebra over a field K is a graded K-vector space
C endowed with a coproduct ∆ : C → C ⊗K C of degree zero together
with a counit ε : C → K and an involution ? : C → C such that:

1. The graded K-vector space C is coassociative and counital, and

2. the involution and ∆ are compatible, therefore: ∆(c?) = (∆(c))?,
for c ∈ C, where the involution on C⊗KC is given by the following
expression: (c1 ⊗ c2)? = (−1)|c1||c2|c?2 ⊗ c?1, for c1, c2 ∈ C.

An involutive coderivation on an involutive coalgebra C is a map
L : C → C preserving involutions and making the following diagram
commutative:

C
L //

∆
��

C

∆
��

C ⊗K C
L⊗IdC+IdC⊗L

// C ⊗K C

Denote with iCoder(−) the spaces of coderivations of involutive coalge-
bras. Observe that iCoder(−) are Lie subalgebras over Coder(−) whose
Lie bracket is given by the commutator [n,−].

An involutive differential graded coalgebra is an involutive coalgebra
C equipped with an involutive coderivation b : C → C of degree −1
such that b2 = b ◦ b = 0.
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A morphism between two involutive coalgebras C and D is a graded

map C
f−→ D compatible with the involutions which makes the follow-

ing diagram commutative:

(1) C
f //

∆C

��

D

∆D

��
C ⊗K C

f⊗f
// D ⊗K D

Example 2.1.1. Let us suppose that A is an associative K-algebra
endowed with an involution. An involutive K-bimodule M is a K-
bimodule M equipped with an involution satisfying the following con-
dition (a ·m)? = m? · a?.
For an involutive graded K-bimodule A, we define the cotensor coalgebra
of A as

TA =
⊕
n≥0

A⊗Kn.

We define an involution in A⊗Kn by stating:

(a1 ⊗ · · · ⊗ an)? := (−1)
∑n

i=1 |ai|(
∑n

j=i+1 |aj |)(a?n ⊗ · · · ⊗ a?1).

We can endow TA with a coproduct as follows:

∆(a1 ⊗ · · · ⊗ an) =

n∑
i=0

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an).

Observe that ∆ commutes with the involution.

For a given (involutive) graded algebra A, HomA−iBimod(−,−) and
iCoder(−) will denote the spaces of involutive homomorphisms and
coderivations of involutive A-bimodules respectively. We will write
HomA−Bimod(−,−) for the space of homomorphisms of A-bimodules.

Let us think of A as a (involutive) bimodule over itself. We denote
the suspension of A by SA and define it as the graded (involutive) K-
bimodule with SAi = Ai−1. Given such a bimodule A, we define the
following morphism of degree −1 induced by the identity s : A → SA
by s(a) = a.

Proposition 2.1. Let us define Bar(A) := A⊗KTSA⊗KA. For an in-
volutive graded algebra A, the following canonical isomorphism of com-
plexes holds:

iCoder (TSA) ∼= HomA−iBimod (Bar(A), A) ,
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where the involution we endow Bar(A) with is the following:

(a0 ⊗ · · · ⊗ an+1)? = a?n+1 ⊗ · · · ⊗ a?0.

Proof. The proof follows the arguments in Proposition 4.1.1 [5], where
we show the result for the non-involutive setting in order to restrict to
the involutive one.

The degree −n part of HomA−Bimod(Bar(A), A) is the space of de-
gree −n linear maps TSA → A, which is isomorphic to the space of
degree (−n− 1) linear maps TSA→ SA. By the universal property of
the tensor coalgebra, there is a bijection between degree (−n−1) linear
maps TSA → SA and degree (−n − 1) coderivations on TSA. Hence
the degree n part of HomA−Bimod(Bar(A), A) is isomorphic to the de-
gree n part of Coder (TSA). One checks directly that this isomorphism
restricts to an isomorphism of graded vector spaces

HomA−iBimod(Bar(A), A) ∼= iCoder (TSA) .

Finally, one can check that the differentials coincide under the above
isomorphism, cf. Section 12.2.4 [7].

Remark 2.2. Proposition 2.1 allows us to think of a coderivation on
the coalgebra TSA as a map TA→ A. Such a map f : TA→ A can be
described as a collection of maps {fn : A⊗n → A} which will be called
the components of f .

If b is a coderivation of degree −1 on TA with bn : A⊗Kn → A, then
b2 becomes a linear map of degree −2 with

b2n =
∑

i+j=n+1

n−1∑
k=0

bi ◦
(

Id⊗k ◦ bj ◦ Id⊗(n−k−j)
)
.

The coderivation b will be a differential for TA if, and only if, all
the components b2n vanish.

Lemma 2.1.2 (cf. Lemma 1.3 [6]). If bk : (SA)⊗Kk → SA is an
involutive linear map of degree −1, we define mk : A⊗Kk → A as
mk = s−1 ◦ bk ◦ s⊗Kk. Under these conditions:

bk(sa1 ⊗ · · · ⊗ sak) = σmk(a1 ⊗ · · · ⊗ ak),

where σ := (−1)(k−1)|a1|+(k−2)|a2|+···+2|ak−2|+|ak−1|+ k(k−1)
2 .
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Proof. The proof follows the arguments of Lemma 1.3 [6]. We only need
to observe that the involutions are preserved as all the maps involved
in the proof are assumed to be involutive.

Let mk := σmk, then we have bk(sa1⊗· · ·⊗sak) = mk(a1⊗· · ·⊗ak).

Proposition 2.3. Given an involutive graded K-bimodule A, let εi =
|a1| + · · · + |ai| − i for ai ∈ A and 1 ≤ i ≤ n. A boundary map b on
TSA is given in terms of the maps mk by the following formula:

bn(sa1 ⊗ · · · ⊗ san) =
n∑
k=0

n−k+1∑
i=1

(−1)εi−1(sa1 ⊗ · · ·

· · · ⊗ sai−1 ⊗mk(ai ⊗ · · · ⊗ ai+k−1)⊗ · · · ⊗ san).

Proof. This proof follows the arguments of Proposition 1.4 [6]. The only
detail that must be checked is that bn preserves involutions:

bn((sa1 ⊗ · · · ⊗ san)?)

=
∑
j,k

±(sa?n ⊗ · · · ⊗ sa?j ⊗mk(a
?
j−1 ⊗ · · · ⊗ a?j−k+1)⊗ · · · ⊗ sa?1)

=
∑
j,k

±(sa1 ⊗ · · · ⊗mk(aj−k+1 ⊗ · · · ⊗ aj−1)⊗ saj ⊗ · · · ⊗ san)?

= (bn(sa1 ⊗ · · · ⊗ san))?.

Given an involutive coalgebra C with coproduct ∆C and counit ε,
for an involutive graded vector space P , a left coaction is a linear map
∆L : P → C ⊗K P such that

1. (Id⊗∆C) ◦∆L = (∆C ⊗ Id) ◦∆L;

2. (Id⊗ ε) ◦∆L = Id.

Analagously we introduce the concept of right coaction.

Given an involutive coalgebra (C,∆C , ε) with involution ? we define
an involutive C-bicomodule as an involutive graded vector space P with
involution †, a left coaction ∆L : P → C ⊗K P and a right coaction
∆R : P → P ⊗K C which are compatible with the involutions, that is
the diagrams below commute:
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(2) P
(−)? //

∆L

��

P

∆R

��
C ⊗K P

(−,−)?
// P ⊗K C

(3) P
∆L

//

∆R

��

C ⊗ P

IdC⊗∆R

��
P ⊗K C

∆L⊗IdC

// C ⊗K P ⊗K C

Here
(−,−)? : C ⊗K P → P ⊗K C

c⊗ p 7→ p† ⊗ c?.
For two involutive C-bicomodules (P1,∆1) and (P2,∆2), a morphism

P1
f−→ P2 is defined as an involutive morphism making diagrams below

commute:

(4) P1
∆L

1 //

f

��

C ⊗K P1

IdC⊗f
��

P2
∆L

2

// C ⊗K P2

(5) P1
∆R

1 //

f

��

P1 ⊗K C

IdC⊗f
��

P2
∆R

2

// P2 ⊗K C

2.2 A∞-algebras and A∞-quasi-isomorphisms

An involutive A∞-algebra is an involutive graded vector space A en-
dowed with involutive morphisms

(6) bn : (SA)⊗Kn → SA, n ≥ 1,

of degree n− 2 such that the identity below holds:

(7)
∑

i+j+l=n

(−1)i+jlbi+1+l ◦ (Id⊗i ⊗ bj ⊗ Id⊗l) = 0, ∀n ≥ 1.

An (involutive) A∞-algebra A is called strictly unital if there exists
an element 1A ∈ A0 which is a unit for b2, satisfying the following
conditions bn(a1, . . . , 1, . . . , an) = 0 if n 6= 2 and 1?A = 1A. If the map
b0 : K→ SA is non trivial, then we say that A is a curved A∞-algebra,
it will be called flat otherwise.



Hochschild homology and cohomology for involutive A∞-algebras 7

Remark 2.4. 1. It is a straight computation to check that condition
(7) says, in particular, that b21 = 0.

2. Observe that when one applies (7) we need to take care of signs
due to Koszul sign rule:

(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(x).

Example 2.2.1. 1. The concept A∞-algebra is a generalization for
that of a differential graded algebra. Indeed, if the maps bn = 0
for n ≥ 3 then A is a differential Z-graded algebra and conversely
an A∞-algebra A yields a differential graded algebra if we require
bn = 0 for n ≥ 3.

2. The definition of A∞-algebra was introduced by Stasheff whose
motivation was the study of the graded abelian group of singular
chains on the based loop space of a topological space.

For an involutive A∞-algebra (A, bA), the involutive bar complex
is the involutive differential graded coalgebra TSA, endowed with a
coderivation defined by bi = s−1 ◦mi ◦ s⊗K i (cf. Definition 1.2.2.3 [9]).

Given two involutive A∞-algebras C and D, a morphism of invo-
lutive A∞-algebras f : C → D is an involutive morphism of degree
zero between the associated involutive differential graded coalgebras
TSC → TSD.

It follows from Proposition 2.1 that the definition of an involutive
A∞-algebra can be summarized by saying that it is an involutive graded
K-vector space A equipped with an involutive coderivation on Bar(A)
of degree −1.

Remark 2.5. It follows from [1], Definition 2.8, we have that a mor-
phism of involutive A∞-algebras f : C → D can be given by a series of
involutive homogeneous maps of degree zero

fn : (SC)⊗Kn → SD, n ≥ 1,

such that

(8)
∑

i+j+l=n

fi+l+1◦
(

Id⊗iSC ⊗ bj ⊗ Id⊗lSC

)
=

∑
i1+···+is=n

bs◦(fi1⊗· · ·⊗fis).

The composition f ◦ g of two morphisms of involutive A∞-algebras is
given by

(f ◦ g)n =
∑

i1+···+is=n

fs ◦ (gi1 ⊗ · · · ⊗ gis);
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the identity on SC is defined as f1 = IdSC and fn = 0 for n ≥ 2.

The condition of being involutive means that the following identity
holds:

fn(c1, . . . , cn)? = σfn(c?n, . . . , c
?
1),

where σ := (−1)
∑n

i=1 |ci|(
∑n

j=i+1 |cj |)(−1)
n(n+1)

2
−1 (see [1], Definition 2.7).

For an involutive A∞-algebra A, we define its associated homol-
ogy algebra H•(A) as the homology of the differential b1 on A, that is:
H•(A) = H•(A, b1).

Remark 2.6. Endowed with b2 as multiplication, the homology of an
A∞-algebra A is an associative graded algebra, whereas A is not usually
associative.

Let f : A1 → A2 be a morphism of involutive A∞-algebras with
components fn; we note that for n = 1, f1 induces a morphism of
algebras H•(A1) → H•(A2). We say that f : A1 → A2 is an A∞-quasi-
isomorphism if f1 is a quasi-isomorphism.

2.3 A∞-bimodules

Let (A, bA) be an involutive A∞-algebra. An involutive A∞-bimodule is
a pair (M, bM ) where M is a graded involutive K-vector space and bM

is an involutive differential on the Bar(A)-bicomodule, whose involution
will be introduced shortly:

B(M) := Bar(A)⊗K SM ⊗K Bar(A).

If ? denotes the involution of Bar(A) and † is the involution for M ,
we can endow B(M) with the following involution:

(a1, . . . , an,m, a
′
1, . . . , a

′
n)‡ := ((a′1, . . . , a

′
n)?,m†, (a1, . . . , an)?).

Let
(
M, bM

)
and

(
N, bN

)
be two involutive A∞-bimodules. We define

a morphism of involutive A∞-bimodules f : M → N as a morphism of
Bar(A)-bicomodules F : B(M)→ B(N) such that bN ◦ F = F ◦ bM .

Proposition 2.7 (cf. [6] Proposition 3.4). If f : A1 → A2 is a mor-
phism of involutive A∞-algebras, then A2 becomes an involutive bimod-
ule over A1.
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Remark 2.8 (Section 5.1 [8]). Let iVect be the category of involutive
Z-graded vector spaces and involutive morphisms. For an involutive
A∞-algebra A, involutive A-bimodules and their respective morphisms
form a differential graded category. Indeed, following [8], Definition
5.1.5: let A be an involutive A∞-algebra and let us define the cate-
gory A− iBimod whose class of objects are involutive A-bimodules
and where HomA−iBimod(M,N) is:

Homn
iVect(Bar(A)⊗K SM ⊗K Bar(A),Bar(A)⊗K SN ⊗K Bar(A)).

Let us recall that

Homn
iVect(Bar(A)⊗K SM ⊗K Bar(A),Bar(A)⊗K SN ⊗K Bar(A))

is by definition the product over i ∈ Z of the morphism sets

HomiVect((Bar(A)⊗KSM⊗KBar(A))i, (Bar(A)⊗KSN⊗KBar(A))i+n).

The morphism

Homn
iVect(Bar(A)⊗K SM ⊗K Bar(A),Bar(A)⊗K SN ⊗K Bar(A))→

Homn+1
iVect(Bar(A)⊗K SM ⊗K Bar(A),Bar(A)⊗K SN ⊗K Bar(A))

sends a family {fi}i∈Z to a family {bN ◦fi−(−1)nfi+1◦bM}i∈Z. Observe
that the zero cycles in Hom•iVect(Bar(A) ⊗K M ⊗K Bar(A),Bar(A) ⊗K
N ⊗K Bar(A)) are precisely the morphisms of involutive A-bimodules.
This morphism defines a differential, indeed: for fixed indices i, n ∈ Z
we have

d2(fi) = d
(
bNfi − (−1)nfi+1b

M
)

= bN
(
bNfi − (−1)nfi+1b

M
)
− (−1)n+1

(
bNfi − (−1)nfi+1b

M
)
bM

(!)
= −(−1)nbNfi+1b

M − (−1)n+1bNfi+1b
M = 0,

where (!) points out the fact that bN ◦ bN = 0 = bM ◦ bM .
For a morphism φ ∈ Homn

iVect(Bar(A)⊗KM ⊗K Bar(A),Bar(A)⊗K
N⊗KBar(A)) and an element x ∈ Bar(A)⊗KM⊗KBar(A), the complex
HomA−iBimod(M,N) becomes an involutive complex if we endowed it
with the involution φ?(x) = φ(x?).

The functor HomA−iBimod(M,−) sends an involutive A-bimodule
F to the involutive K-vector space HomA−iBimod(M,F ) of involutive
homomorphisms. Given a homomorphism f : F → G, for

F,G ∈ Obj
(
A− iBimod

)
,
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HomA−iBimod(M,−) sends f to the involutive map:

f? : HomA−iBimod(M,F ) → HomA−iBimod(M,G)

φ 7→ f ◦ φ .

We prove that f? preserves involutions:

(f?φ
?)(x) = (f ◦ φ?)(x) = f(φ(x?))

= f((φ(x))?) = (f(φ(x)))? = (f?φ(x))?.

Let us introduce the functor HomA−iBimod(−,M), which sends an

involutive homomorphism f : F → G, for F,G ∈ Obj
(
A− iBimod

)
,

to
ϕ : HomA−iBimod(G,M) → HomA−iBimod(F,M)

φ 7→ φ ◦ f

Let us check that the involution is preserved:

ϕ(φ?)(x) = (φ?◦f)(x) = φ(f(x)?) = φ(f(x?)) = ϕ(φ)(x?) = (ϕ(φ))?(x).

Let A be an involutive A∞-algebra and let
(
M, bM

)
and

(
N, bN

)
be

involutive A-bimodules. For f, g : M → N involutive morphisms of A-
bimodules, an A∞-homotopy between f and g is an involutive morphism
h : M → N of A-bimodules satisfying

f − g = bN ◦ h+ h ◦ bM .

We say that two morphisms u : M → N and v : N → M of involutive
A-bimodules are homotopy equivalent if u ◦ v ∼ IdN and v ◦ u ∼ IdM .

3 The involutive tensor product

For an involutive A∞-algebra A and involutive A-bimodules M and N ,
the involutive tensor product M�̃∞N is the following object in iVectK:

M�̃∞N :=
M ⊗K Bar(A)⊗K N

(m? ⊗ a1 ⊗ · · · ⊗ ak ⊗ n−m⊗ a1 ⊗ · · · ⊗ ak ⊗ n?)
.

Observe that, for an element of M�̃∞N of the form m⊗a1⊗· · ·⊗ak⊗n,
we have:

(m⊗a1⊗· · ·⊗ak⊗n)? = m?⊗a1⊗· · ·⊗ak⊗n = m⊗a1⊗· · ·⊗ak⊗n?.
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Proposition 3.1. For an involutive A∞-algebra A and involutive A-

bimodules M,N and L, HomiVect

(
M�̃∞N,L

)
is isomorphic to

HomiVect

(
M ⊗K Bar(A)

∼
,HomA−iBimod(N,L)

)
,

where in M ⊗K Bar(A) : (m⊗ a1 ⊗ · · · ⊗ ak)? = m? ⊗ a1 ⊗ · · · ⊗ ak, ∼
denotes the relation

m⊗ a1 ⊗ · · · ⊗ ak = m? ⊗ a1 ⊗ · · · ⊗ ak

and M⊗KBar(A)
∼ has the identity map as involution.

Proof. Let f : M�̃∞N → L be an involutive map. We define:

τ(f) := τf ∈ HomiVect

(
M ⊗K Bar(A)

∼
,HomA−iBimod(N,L)

)
,

where τf (m⊗a1⊗· · ·⊗ak) := τf [m⊗a1⊗· · ·⊗ak] ∈ HomA−iBimod(N,L).
Finally, for n ∈ N we define:

τf [m⊗ a1 ⊗ · · · ⊗ ak](n) := f (m⊗ a1 ⊗ · · · ⊗ ak ⊗ n) .

We need to check that τ preserves the involutions, indeed:

τf? [m⊗ a1 ⊗ · · · ⊗ ak](n) = f? (m⊗ a1 ⊗ · · · ⊗ ak ⊗ n) =

= (f (m⊗ a1 ⊗ · · · ⊗ ak ⊗ n))? = (τf )?[m⊗ a1 ⊗ · · · ⊗ ak](n).

In order to see that τ is an isomorphism, we build an inverse. Let
us consider an involutive map

g1 : M⊗KBar(A)
∼ → HomA−iBimod(N,L)

m⊗ a1 ⊗ · · · ⊗ ak 7→ g1[m⊗ a1 ⊗ · · · ⊗ ak]

and define a map

g2 : M�̃∞N → L
m⊗ a1 ⊗ · · · ⊗ ak ⊗ n 7→ g1[m⊗ a1 ⊗ · · · ⊗ ak](n)

We check that g2 is involutive:

g2((m⊗ a1 ⊗ · · · ⊗ ak ⊗ n)?) = g2(m? ⊗ a1 ⊗ · · · ⊗ ak ⊗ n) =

= g1[m? ⊗ a1 ⊗ · · · ⊗ ak](n) = (g1[m⊗ a1 ⊗ · · · ⊗ ak])?(n)

= (g1[m⊗ a1 ⊗ · · · ⊗ ak](n))? = (g2(m⊗ a1 ⊗ · · · ⊗ ak ⊗ n))?.

The rest of the proof is standard and follows the steps of Theorem
2.75 [10] or Proposition 2.6.3 [11].
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For an A-bimodule M , let us define (−)�̃∞M as the covariant func-
tor

A− iBimod
(−)�̃∞M−−−−−−→ A− iBimod

B  B�̃∞M
.

This functor sends a map B1
f−→ B2 to B1�̃∞M

f�̃∞IdM−−−−−−→ B2�̃∞M .
The functor (−)�̃∞M is involutive: let us consider an involutive

map f : B1 → B2 and its image under the tensor product functor,
g = f�̃∞IdM . Hence:

g((b, a)?) = g(b?, a) = (f(b?), a) = (f(b), a)? = (g(b, a))?.

Given an involutive A∞-algebra A, we say that an involutive A-
bimodule F is flat if the tensor product functor

(−)�̃∞F : A− iBimod→ A− iBimod

is exact, that is: it takes quasi-isomorphisms to quasi-isomorphisms.

Lemma 3.0.1. If P and Q are homotopy equivalent as involutive
A∞-bimodules then, for every involutive A∞-bimodule M , the following
quasi-isomorphism in the category of involutive A∞-bimodules holds:

P �̃∞M ' Q�̃∞M.

Proof. Let f : P � Q : g be a homotopy equivalence. It is clear that

h ∼ k ⇒ h�̃∞IdM ∼ k�̃∞IdM .

Therefore, we have:

P �̃∞M → Q�̃∞M → P �̃∞M
p�̃a 7→ f(p)�̃a 7→ g(f(p))�̃a

and
Q�̃∞M → P �̃∞M → Q�̃∞M
q�̃a 7→ g(q)�̃a 7→ f(g(q))�̃a

the result follows since f ◦ g ∼ IdQ and g ◦ f ∼ IdP .

Lemma 3.0.2. Let A be an involutive A∞-algebra. If P and Q are
homotopy equivalent as involutive A-bimodules then, for every involutive
A-bimodule M , the following quasi-isomorphism holds:

HomA−iBimod(P,M) ' HomA−iBimod(Q,M).
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Proof. Consider f : P → Q a homotopy equivalence and let g : Q →
P be its homotopy inverse. If [−,−] denotes the homotopy classes of
morphisms, then both f and g induce the following maps:

f? : [P,M ] → [Q,M ]
α 7→ α ◦ g

g? : [Q,M ] → [P,M ]
β 7→ β ◦ f

Now we have:

f? ◦ g? ◦ β = f? ◦ β ◦ f = β ◦ g ◦ f ∼ β;

g? ◦ f? ◦ α = g? ◦ α ◦ g = α ◦ f ◦ g ∼ α.

4 Involutive Hochschild (co)homology

4.1 Hochschild homology for involutive A∞-algebras

We define the involutive Hochschild chain complex of an involutive A∞-
algebra A with coefficients in a involutive A-bimodule M as

C inv
• (M,A) = M�̃∞B(A).

The differential is the same given in Section 7.2.4 [8]. The involutive
Hochschild homology of A with coefficients in M is

HHn(M,A) = HC inv
n (M,A).

Lemma 4.1.1. For an involutive flat strictly unital A∞-algebra A and
an involutive A-bimodule M , the following quasi-isomorphism holds:

Cinv
• (M,A) 'M�̃∞A.

Proof. The result follows from:

M�̃∞A 'M�̃∞B(A) = C inv
• (M,A).

Observe that we are using that there is a quasi-isomorphism, therefore
a homotopy equivalence (Proposition 1.3.5.1 [9]), between B(A) and A
(Proposition 2, Section 2.3.1 [3]).



14 Ramsès Fernàndez-València

4.2 Hochschild cohomology for involutive A∞-algebras

The involutive Hochschild cochain complex of an involutive A∞-algebra
A with coefficients on an involutive A-bimodule M is defined as the
K-vector space C•inv(A,M) := HomA−iBimod(B(A),M), with the differ-
ential defined in section 7.1 of [8].

Proposition 4.1. For an involutive A∞-algebra A and an involutive A-
bimodule M , we have the following quasi-isomorphism: C•inv(A,M) '
HomA−iBimod(A,M).

Proof. The result follows from:

C•inv(A,M) = HomA−iBimod(B(A),M) :=

Homn
iVect(Bar(A)⊗KSBar(A)⊗K Bar(A),Bar(A)⊗KSM⊗K Bar(A))

(!)
'

Homn
iVect(Bar(A)⊗K SA⊗K Bar(A),Bar(A)⊗K SM ⊗K Bar(A)) =:

HomA−iBimod(A,M).

Here (!) points out the fact that SBar(A) is a projective resolution of
SA in iVect and hence we have the quasi-isomorphism SBar(A) ' SA.
Observe that SBar(A) is projective in iVect, therefore the involved
functors in the proof are exact and preserve quasi-isomorphisms.
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Technology Centre of Catalonia,
54 Antic de València Road,
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