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CONFIGURATION SPACES ∗

SAMUEL GITLER 1

Abstract

This article is intended as a brief introduction to the theory of
configuration spaces as well as to some of the basic techniques
used in Algebraic Topology. Some recent results about loop spaces
of configuration spaces are also presented at the end.
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1 Introduction

Given a topological space X, let Xk be the k-fold cartesian product of
X with itself, Xk = {(x1, . . . , xk) | xi ∈ X}.

Definition 1.1 The configuration space F (X, k) of k-ordered tuples in
X is given by:

F (X, k) = {(x1, . . . , xk) ∈ Xk | xi 6= xj if i 6= j}.

In other words, F (X, k) is the subspace that results of removing all
the “diagonals” from Xk.

A natural question that arises now is: Can we describe F (X, k) as
a topological space in terms of X ? We will try to give an answer for a
wide range of spaces. In this section, we consider some simple examples.

∗Invited article. All the new results that appear here are part of joint work
with Frederick R. Cohen.
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Example: Let X = Rn be the n-dimensional euclidean space (which is
also a vector space) and consider the configuration space F (Rn, k). If
(x1, . . . , xk) ∈ F (Rn, k), then xi 6= xj or equivalently xi − xj 6= ~0 for all
i, j. Thus we can define a continuous map

φ : F (Rn, k) −→ Rn × F (Rn − {~0}, k − 1)

given by φ(x1, . . . , xk) = (x1, x2 − x1, . . . , xk − x1). One verifies easily
that φ is a homeomorphism. Clearly, the inverse is φ−1(y1, . . . , yn) =
(y1, y2 + y1, . . . , yn + y1).

Now, let π :F (Rn, k) → Rn be the projection onto the first coordi-
nate. Then we have:

π−1(~0) = {(~0, y1, . . . , yk−1) | yi 6= ~0, yi 6= yj if i 6= j}.

Thus π−1(~0) is homeomorphic to F (Rn − {~0}, k − 1). We have then es-
tablished that the map F (Rn, k)

π−→ Rn is a fibre bundle (and therefore
a fibration) with fibre F (Rn − {~0}, k − 1). Moreover, it is a product
bundle since

F (Rn, k) ' Rn × F (Rn − {~0}, k − 1).

The argument given above depends only on the fact that (Rn,+) is a
topological group. In such a case we have

Theorem 1.2 If G is a topological group, and e ∈ G is the identity.
Then there is a homeomorphism:

F (G, k) ' G× F (G− {e}, k − 1).

More generally, in the classical paper [Fad-Neu] Fadell and Neuwirth
proved that if M is a manifold and Qi a subset of i distinct points of
M , then there is a fibration:

F (M,k)

π

��

F (M −Qi, k − i)oo

F (M, i)
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where i ≤ k and π is the projection on the first i coordinates. In
particular, in the case of M = Rn, we have a sequence of fibrations:

(1)

F (Rn, k)

��

F (Rn −Q1, k − 1)oo

��

· · ·oo F (Rn −Qk−1, 1)oo

≈
��

Rn Rn −Q1 Rn −Qk−1

where all vertical maps are projections and the horizontal ones are in-
clusions of the fibres.

2 The Homology of F (Rn, k) and F (Sn, k)

In algebraic topology we study invariants of topological spaces. A
systematic way to do this is to consider certain families of functors
Tq : T OP −→ AB q ≥ 0 , from the category of topological spaces to
the category of abelian groups.

Each functor is a rule that associates to every topological space X,
an abelian group Tq(X) and to every continuous map f :X → Y assigns
a homomorphism

Tq(f) : Tq(X) −→ Tq(Y )

such that:

• Tq(1X) = 1Tq(X) where 1X :X → Y and 1Tq(X) : Tq(X) →
Tq(Y ) are the identity maps.

• Tq(g ◦ f) = Tq(g) ◦ Tq(f) for all f :X → Y, g :Y → Z.

The kind of functors that are most frequently used in algebraic topol-
ogy are homotopy functors:
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Definition 2.1 Let f, g :X → Y be two maps from X to Y . We say
that f is homotopic to g if there is a map H : X × I −→ Y such that

H(x, 0) = f(x) ∀x ∈ X,

H(x, 1) = g(x) ∀x ∈ X.

The map H is called a homotopy between f and g and we write
f ' g. It is clear that homotopy is an equivalence relation.

Definition 2.2 Given a functor T : T OP → AB we say that it is a
homotopy functor if T (f) = T (g) whenever f ' g.

Two spaces are of the same homotopy type (or homotopy equivalent)
and we write X ' Y if there are maps f :X → Y and g :Y → X such
that

f ◦ g ' 1Y

g ◦ f ' 1X

As a consequence, if X ' Y and T is a homotopy functor, then the
groups T (X) and T (Y ) are isomorphic.

The homotopy functor we are interested in here is Hq = Hq( ;Q)
the qth-homology group with rational coefficients. Thus Hq(X) is a
vector space over Q and we will restrict ourselves to those spaces X for
which Hq(X) is a finite dimensional vector space.

Associated to the sequence of vector spaces {Hq(X)}∞q=0 we have the
Poincaré series of X:

P (X) =

∞∑
n=0

an(X) tn

where an(X) = dimHn(X). P (X) is a formal series on the variable t.
For example, when X = Rn or Sn we have

P (Rn) = 1,

P (Sn) = 1 + tn,

where Sn is the n-sphere in Rn+1 : Sn = {~x ∈ Rn+1 | ‖~x‖ = 1}.



CONFIGURATION SPACES 5

The Poincaré series has very nice features:

For example, using the Künneth formulasHq(X×Y ) =
⊕q

r=0Hr(X)⊗
Hq−r(Y ) we deduce that:

P (X × Y ) = P (X) · P (Y ) .

Also, if (X,xo) and (Y, yo) are well pointed and connected spaces
and X ∨ Y is the one-point union of X and Y

X ∨ Y = {(x, yo) ∈ X × Y | x ∈ X} ∪ {(xo, y) ∈ X × Y | y ∈ Y }

then

Hq(X ∨ Y ) ∼=

{
Q if q = 0

Hq(X)⊕Hq(Y ) if q ≥ 1 .

Thus we have
P (X ∨ Y ) = P (X) + P (Y )− 1.

Now, let us return to the fibration diagram (1). It is easy to see that

Rn −Qj ' Sn−1 ∨ · · · ∨ Sn−1︸ ︷︷ ︸
j

and therefore P (Rn −Qj) = 1 + jtn−1.

On the other hand, the fibrations in (1) are not products anymore,
but homologically they behave as if they were, this is

H∗F (Rn, k) ∼= H∗(Rn)⊗H∗(Rn −Q1)⊗ · · · ⊗H∗(Rn −Qk−1).

In other words:

(2) P (F (Rn, k)) =

k−1∏
j=1

(1 + jtn−1).

It can also be proven that:
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(3) P (F (Sn, k)) = (1 + tn)
k−2∏
j=1

(1 + jtn−1).

This is the only known example for the Poincaré series of F (M,k)
where M is a closed manifold, that is, compact and without boundary.

3 The Loop Space of F (M,k)

Definition 3.1 Let (X,xo) be a pointed topological space. The loop
space of X based at xo, ΩX is the space of continuous maps:

ΩX = {α : [0, 1] −→ X | α(0) = α(1) = xo}

equipped with the compact-open topology.

In ΩX we can define a multiplication ΩX×ΩX
µ−→ ΩX , mapping the

pair (α, β) to the loop α ∗ β given by

(α ∗ β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2

β(2t− 1) if 1
2 ≤ t ≤ 1 .

The map µ is continuous, and therefore, it induces for every q ≥ 0 a
homomorphism

Hq(ΩX × ΩX)
Hq(µ)−−−−→ Hq(ΩX).

Again by the Künneth formulas we have that

Hq(ΩX × ΩX) =

q⊕
i=0

Hi(ΩX)⊗Hq−i(ΩX),

and thus, as graded vector spaces

H∗(ΩX × ΩX) ∼= H∗(ΩX)⊗H∗(ΩX).
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Therefore, µ induces an algebra structure on H∗(ΩX)

H∗(µ) : H∗(ΩX)⊗H∗(ΩX) −→ H∗(ΩX).

On the other hand, the diagonal map ΩX
∆−−−→ ΩX×ΩX given by

∆(α) = (α, α) induces a comultiplication

H∗(ΩX)
H∗(∆)−−−−−→ H∗(ΩX)⊗H∗(ΩX).

Recall the following definition (see for example [Mil-Mo]):

Definition 3.2 Let F be a field. A Hopf algebra over F is a graded
vector space H together with a multiplication µ :H ⊗H → H , a comul-
tiplication ∆ :H → H ⊗ H , a unit η : F → H and an augmentation
ε :H → F , such that

1. (H,µ, η) is an algebra over F with augmentation ε.

2. (H,∆, ε) is a coalgebra over F with unit η.

3. The following diagram commutes:

H ⊗H µ
//

∆⊗∆
��

H
∆ // H ⊗H

H ⊗H ⊗H ⊗H 1⊗T⊗1
// H ⊗H ⊗H ⊗H

µ⊗µ

OO

where T (a⊗ b) = (−1)
|a||b|

b⊗ a for homogeneous a and b.

Then, by [Mil-Mo], the structures H∗(µ) and H∗(∆) determine a
structure of Hopf algebra on H∗(ΩX).

Another important property of the loop-space functor Ω is that it

preserves fibrations, this is, if F
i−→ E

p−→ B is a fibration, then the map
Ωp is a multiplicative fibration

ΩF
Ωi−−→ ΩE

Ωp−−→ ΩB,

which means that all the maps are maps of H-spaces.
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Fred Cohen and the author are currently studying the space ΩF (M,k)
where M is a manifold without boundary.

In the case of M = R2, the points in ΩF (R2, k) can be thought of
as braids in k strands. For general M , ΩF (M,k) is known as the braid
space of M .

Definition 3.3 We say that M is a p-manifold (or a punctured mani-
fold) if M 'M ′−Q1 where M ′ is a manifold without boundary and Q1

is a single point.

Thus for instance, Rn ' Sn −Q1 is a p-manifold.

From the Fadell-Neuwirth fibrations, we have in general:

F (M,k)

��

F (M −Q1, k − 1)oo

��

· · ·oo F (M −Qk−1, 1)oo

≈
��

M M −Q1 M −Qk−1

Taking loops we have multiplicative fibrations:

ΩF (M,k)

��

ΩF (M −Q1, k − 1)oo

��

· · ·oo ΩF (M −Qk−1, 1)oo

≈
��

ΩM Ω(M −Q1) Ω(M −Qk−1)

Theorem 3.4 If M is a p-manifold, then all the fibrations above are
homotopy-equivalent to products. In particular,

ΩF (M,k) ' ΩM × Ω(M −Q1)× · · · × Ω(M −Qk−1).

The homotopy equivalence in Theorem 3.4 is not multiplicative i.e.
it is not an equivalence of H-spaces in general. Therefore

H∗ΩF (M,k) ∼= H∗(ΩM)⊗H∗Ω(M −Q1)⊗ · · · ⊗H∗Ω(M −Qk−1)

as graded vector spaces but it is not in general an isomorphism of alge-
bras.
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However, in the case of M = Rn we have obtained the following
result:

Let L(n, k) be the free Lie algebra on generators {Bi,j}k≥i>j≥1 of
degree n− 2, and consider the relations:

1. [Bi,j , Bs,t] = 0 if {i, j} ∩ {s, t} = ∅

2. [Bi,j , Bi,t + (−1)nBt,j ] = 0 if 1 ≤ j < i ≤ k

3. [Bt,j , Bi,j +Bi,t] = 0 if 1 ≤ j < i ≤ k.

Now, let B(n, k) be the quotient Lie algebra of L(n, k) by the rela-
tions above. Then we have:

Theorem 3.5 The algebra H∗(ΩF (Rn, k)) is the universal enveloping
algebra of B(n, k).

The relations 1, 2 and 3 are known as the infinitesimal braid relations
(or infinitesimal Yang-Baxter relations), and the Bi,j ’s are the primitive
elements in H∗(ΩF (Rn, k)).

The Lie algebra B(n, k) has appeared in a totally different context in
the works of Kohno and Drinfeld, when they were studying the work of
Knishik - Zamoldchikov about flat connections associated to the Braid
groups.

More generally:

For any manifold M we have an inclusion i : Rn ↪→M in the neigh-
borhood of a point mo ∈M . This map induces inclusions:

F (Rn, k) −→ F (M,k)

ΩF (Rn, k) −→ ΩF (M,k)

Moreover, we have:
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Theorem 3.6 If M is a p-manifold, then

ΩF (M,k) '
ϕ

(ΩM)k × ΩF (Rn, k)×
k−1∏
i=1

ΩΣ(ΩM ∧ Ω(∨iSn−1)),

where ΣX is the reduced suspension of X and X ∧ Y = X × Y/X ∨ Y .

The maps ΩM −→ ΩF (M,k), ΩF (Rn, k) −→ ΩF (M,k) and

k−1∏
i=1

ΩΣ(ΩM ∧ Ω(∨iSn−1)) −→ ΩF (M,k)

are multiplicative.

Theorem 3.7 If M ′ = M ′1×M ′2×M ′3 and M = M ′−Q1, where M is
a differentiable manifold, then ϕ induces a multiplicative isomorphism
in homology with F coefficients if either:

(i) wn−1(M) = 0 if F = F2.

(ii) The Euler class of τ(M)− 1 is trivial if F = Fp or Q.
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CINVESTAV-IPN
Apdo. Postal 14-740
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