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INTERCALATE MATRICES AND

ALGEBRAIC VARIETIES ∗

FRANCISCO JAVIER ZARAGOZA MARTÍNEZ 1

Abstract

We give a characterization of intercalate matrices as an algebraic
variety over a finite field. We also prove Yuzvinsky’s conjecture
on the minimum number of colors in an intercalate matrix for
matrices with 5 or less rows. Finally, we obtain a set of 37 cases
which, if established, would verify Yuzvinsky’s conjecture as true
for matrices up to order 32× 32.
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1 Introduction

A matrix (whose entries are colors) is pseudolatin if it has no repeated
colors along any row or column. If additionally it has two or four colors
in each of its 2× 2 submatrices then it is called intercalate [5]. Equiva-
lently, a matrix is intercalate if all of its 2× 2 submatrices are of one of
the forms (

a b
b a

)
or

(
a b
c d

)
where a, b, c, d are distinct colors.

A 2× 2 submatrix of an intercalate matrix is called an intercalation
if it has two colors and called a co-intercalation if it has four colors.
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Two matrices are isotopic if one can be obtained from the other using
only permutations of rows and columns and relabeling of colors.

An intercalate matrix is of type (r, s, n) if it has r rows, s columns
and n distinct colors. In 1981 Yuzvinsky [23] conjectured that any
intercalate matrix of type (r, s, n) satisfies that n ≥ r ◦ s, where (in
GF (2))

r ◦ s = min{n : (x+ y)n ∈ (xr, ys)}

is the Pfister’s function.

2 The Alon–Tarsi lemma

Let F be a field and f(x) a non zero polynomial with coefficients in F ,
i.e. f ∈ F [x]. The following fact is well known:

Lemma 2.1.1 If A ⊂ F , |A| = r and f(a) = 0 for all a ∈ A, then
deg(f) ≥ r.

In 1992, Alon and Tarsi proved a generalization of this result, known
as the Alon–Tarsi lemma [1, 4]. After that, Eliahou and Kervaire [10]
made equivalent formulations including the following:

Theorem 2.1.2 Let f be a polynomial in F [x1, . . . , xn] and A1, . . . , An
be subsets of F such that |A1| = r1, . . . , |An| = rn and suppose that
f(A1 × · · · × An) = 0, then top(f) is in the ideal (xr11 , . . . , x

rn
n ), where

top(f) is the homogeneus component of f with maximal degree.

Proof: By induction on n. For n = 1 this is equivalent to the previous
lemma. Let n > 1 and assume that the result is true for n − 1. Let
f ∈ F [x1, . . . , xn]. We can classify the monomials of top(f) in two
classes:

• u1, . . . , uk /∈ (xrnn ), and

• v1, . . . , vl ∈ (xrnn ) ⊂ (xr11 , . . . , x
rn
n ).

The second class is obviously in (xr11 , . . . , x
rn
n ), then it is enough to

show that {u1, . . . , uk} ⊂ (xr11 , . . . , x
rn−1

n−1 ), and we can assume without
loss of generality that l = 0.

Consider
g(xn) =

∏
a∈An

(xn − a) = xrnn − h(xn)



INTERCALATE MATRICES AND ALGEBRAIC VARIETIES 69

where deg(h) < rn, then we can replace each ocurrence of xrnn in f with
h(xn) and this does not change the fact that f(A1×· · ·×An) = 0. The
new top(f) = {u1, . . . , uk} /∈ (xrnn ).

Now write f as a polynomial in xn

f = f0 + f1xn + · · ·+ fdx
d
n

with d < rn.
Let a ∈ A1 × · · · ×An−1 and write

fa(xn) = f0(a) + f1(a)xn + · · ·+ fd(a)xdn ∈ F [xn].

It is clear that fa(An) = 0, from here, fa(xn) is identically zero,
as it has at least rn roots. Then, fi(a) = 0 for 1 ≤ i ≤ d and then
fi(A1 × · · · × An−1) = 0 and finally top(fi) ∈ (xr11 , . . . , x

rn−1

n−1 ) for all i.
Then

top(f) = top(top(f0) + top(f1)xn + · · ·+ top(fd)x
d
n) ∈ (xr11 , . . . , x

rn−1

n−1 ).

2

3 Yuzvinsky’s conjecture in the dyadic case

The Alon–Tarsi lemma proved to be a useful tool to give a short proof
of Yuzvinsky’s conjecture in the case where the intercalate matrix is a
submatrix of the Cayley’s table of the dyadic group (D = (Z,⊕)), as
shown in [11].

Theorem 3.1.3 Let V be a vector space on GF (2). Let A,B ⊂ V with
respective cardinalities r, s. Then |A⊕B| ≥ r ◦ s.

Proof: We can assume that V is the field Fq with q = 2m for some
positive integer m. Let C = A⊕B. Now consider the polynomial

f(x, y) =
∏
c∈C

(x+ y − c)

in Fq[x, y] (remember that + and − are identical with ⊕). It is clear
that for any a ∈ A, b ∈ B we have that f(a, b) = 0, i.e. f(A × B) = 0,
so f satisfies the conditions of the Alon–Tarsi lemma.

Note also that top(f) = (x + y)|C|. By the Alon–Tarsi lemma this
implies that (x + y)|C| ∈ (xr, ys) in Fq[x, y]. It can be shown that the
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previous statement is also true for F2[x, y]. Looking at the definition of
r ◦ s we can conclude that |C| ≥ r ◦ s. 2

It is worth noting that we can always find an intercalate matrix of
type (r, s, r◦s) by taking A = {0, 1, . . . , r−1} and B = {0, 1, . . . , s−1}.

4 Algebraic varieties

Let F be a field. A subset of Fn is an algebraic variety if it is the set
of roots of some polynomial in the ring F [x1, . . . , xn]. We will show a
characterization of the set of non intercalate matrices of type (r, s, n) as
an algebraic variety constructing a polynomial Prs such that Prs(A) = 0
if and only if the matrix A is non intercalate.

Let xij be an indeterminate corresponding to the coordinate (i, j)
of the matrix A of order r × s. Let Fq be a finite field with cardinality
q ≥ rs (this implies, of course, that q = pm for some prime p and integer
m). We must note that A has at most rs different colors and then we
can always find a matrix isotopic to A such that all of its colors are
taken from Fq.

Consider the following polynomials in Fq[x11, . . . , xrs]:

Ri(X) =
∏

1≤j<k≤s
(xij − xik)

Cj(X) =
∏

1≤i<k≤r
(xij − xkj)

Qijkl(X) = H(xij − xkl)H(xil − xkj) + (xij − xkl)(xil − xkj)

where X = {x11, . . . , xrs} and H(x) = 1−xφ(q). Euler’s theorem implies
that H(x − y) = 1 if and only if x = y, that is, δ(x, y) = H(x − y) is
the characteristic function over Fq.

Now consider the polynomial

Prs(X) =
r∏
i=1

Ri
s∏
j=1

Cj
1≤i<k≤r∏
1≤j<l≤s

Qijkl

Theorem 4.1.4 Let A be a matrix of order r × s with colors in Fq,
then Prs(A) = 0 if and only if A is non intercalate.

Proof: First assume that A is non intercalate, then A fails to satisfy
one or more of the intercalation conditions:
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• for some i the entries aij and aik are equal, then Ri(A) = 0,

• for some j the entries aij and akj are equal, then Cj(A) = 0,

• for some columns i, k and some rows j, l the 2 × 2 submatrix in-
duced by them has exactly three colors as follows:

i k

j a b
l c a

then Qijkl(A) = H(a− a)H(c− b) + (a− a)(c− b) = 0.

In any case, it follows that Prs(A) = 0.

Now, if A is intercalate then, as it is pseudolatin, all the entries
in each row and column are distinct, then Ri(A) 6= 0, Cj(A) 6= 0 for
every i, j. Furthermore, every 2× 2 submatrix has four or two colors as
follows:

i k

j a b
l c d

or

i k

j a b
l b a

In the first case we have:

Qijkl(A) = H(a− d)H(c− b) + (a− d)(c− b) = (a− d)(c− b) 6= 0

and in the second case:

Qijkl(A) = H(a− a)H(b− b) + (a− a)(b− b) = 1 6= 0.

Then, it follows that Prs(A) 6= 0. 2

Note that the degree of Prs(A) is

1

2
rs(r + s− 2 + (q − 1)(r − 1)(s− 1)) ∼ 1

2
r3s3.

We will use the following lemma, proposed by Sarmiento [17], to
decrease the degree of the previous polynomial.

Lemma 4.1.5 For every u, v ∈ Fq we have that H(u)H(v) + uv = 0 if
and only if H(u) +H(v) = 1.
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Proof: Remember that H(0) = 1 and H(x) = 0 for x 6= 0.
(⇐) From H(u) = 1 and H(v) = 0 we get u = 0 and then H(u) +

H(v) + uv = 1 · 0 + 0 · v = 0.
(⇒) Assume both H(u) = H(v) = 1 then u = v = 0 and

H(u)H(v) + uv = 1 · 1 + 0 · 0 = 1

which is impossible. Then H(v) = 1 and H(u) = 0. From here uv = 0,
v = 0 and H(v) = 1. Finally H(u) +H(v) = 0 + 1 = 1. 2

Let
Oijkl(X) = H(xij − xkl) +H(xil − xkj)− 1

then it is clear that Oijkl(X) = 0 if and only if Qijkl(X) = 0.

Lemma 4.1.6 The 2×2 submatrix taken from columns i, k and rows j, l
of the pseudolatin matrix A has a number of distinct colors determined
by the value of Oijkl(A) as follows:

Oijkl(A) colors

1 2
0 3
-1 4

Proof: Let h = Oijkl(A) and a, b, c, d be the colors in the mentioned
submatrix.

• If a, b, c, d are all distinct then h = H(a − c) + H(b − d) − 1 =
0 + 0− 1 = −1.

• If a = c and b = d then h = H(a−a)+h(b−b)−1 = 1+1−1 = 1.

• Finally, if a = c but b 6= d then h = H(a − a) + H(b − d) − 1 =
1 + 0− 1 = 0. 2

Now consider the polynomial

Nrs(X) =
r∏
i=1

Ri
s∏
j=1

Cj
1≤i<k≤r∏
1≤j<l≤s

Oijkl

Theorem 4.1.7 Let A be a matrix of order r × s with colors in Fq,
then Nrs(A) = 0 if and only if A is non intercalate. Furthermore,∏1≤i<k≤r

1≤j<l≤s O
ij
kl = (−1)t if A is intercalate and has t co-intercalations.
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Proof: Immediate from previous lemmas. 2

Note that the degree of Nrs is

1

4
rs(2r + 2s− 4 + (q − 1)(r − 1)(s− 1)) ∼ 1

4
r3s3.

Now we can reformulate Yuzvinsky’s conjecture as follows. Let

Brs = B × · · · ×B︸ ︷︷ ︸
rs times

.

Conjecture 4.1.8 Let Fq be a finite field with cardinality q ≥ r ◦ s− 1
and let B ⊆ Fq such that |B| = r ◦ s − 1, then Nrs(X) = 0 for all
X ∈ Brs.

Note that if q = r ◦s−1 then B = Fq and the conjecture states that
Nrs(X) is the zero polynomial.

5 Yuzvinsky’s conjecture up to 32× 32

It has been shown that Yuzvinsky’s conjecture is true when either r or
s is ≤ 5 and when both r, s ≤ 16 [8, 22]. Now we will study conditions
that must be satisfied in order to show that the conjecture is true for
r, s ≤ 32.

5.1 Signability

The following result is well known [9]:

Theorem 5.1.1 Let A be a signable intercalate matrix of type (r, s, n),
then n ≥ r ◦ s.

Proof: Under the hypothesis, the matrix A determines a formula

(x21 + · · ·+ x2r)(y
2
1 + · · ·+ y2s) = z21 + · · ·+ z2n.

Now, by a theorem of Hopf and Stiefel [13, 20], we have that n ≥ r ◦ s.
2

The incidence matrix of A is the matrix Ã that has as rows its
coordinates, as columns its intercalations, and as colors ÃCI = 1 if the
intercalation I uses coordinate C and ÃCI = 0 in other case.

Let ~1 be the vector all whose entries are equal to 1. In [6, 23] we
find:
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Lemma 5.1.2 A is signable if and only if the system xÃ = ~1 has a
solution over F2.

Lemma 5.1.3 One and only one of the following systems has a solution
over F2: (1) xÃ = ~1 or (2) Ãw = 0,~1w = 1.

Now we will show that the intercalate matrices with five or less rows
are signable [8]:

Theorem 5.1.4 Every r × s intercalate matrix with r ≤ 5 is signable.

Proof: Let w be a solution of the system (2) from the previous lemma.
Assume that w has ai intercalations in the i-th column of A. We denote
the least of the ai as the column type of w. We define the column type
of A as the minimal of the column types of the w in it.

We say that an intercalate matrix is connected if for every partition
of its columns in two non empty sets X,Y there exists a color c that is
in both X and Y . We say that an intercalate matrix is complete if each
of its rows is a permutation of each other.

Let us assume, for a contradiction, that there exists an intercalate
non signable matrix A with five rows. We can assume that A has the
minimal number possible of columns and, from those non signable ma-
trices with the same number of columns, A has the least possible column
type. In particular, A has at least four coordinates in each column, at
least four intercalates in the first column and is connected.

Let us assume that A attains its column type in w and that w attains
its column type in the first column

1. A cannot contain a 4 × 3 main submatrix of D. If A has such a
submatrix, then A has a 5 × 8 main submatrix of D. But this
submatrix is complete, connected and signable and then A is not
connected, a contradiction.

a b c d e f g −
b a d c f e − g
c d a b g − e f
d c b a − g f e
e f g − a b c d

2. If some coordinate occupied by w in the first row is in four in-
tercalations, then in A there exists a 3 × 4 main submatrix of D
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that uses the first column. Then, using an elementary column
operation we can decrease the column type of w and A, which is a
contradiction. Then each coordinate of A in the first column is in
at most two intercalations of w and, as a consecuence, the column
type of A is either 4 or 5.

3. Assume first that A has column type 5. In particular w uses the
five coordinates of the first column. Then A necessarily contains
a substructure as the following:

a b c
b a d
c a e
d b e
e c d

This matrix can be completed in a unique way as follows:

a b c f g h
b a i d j k
c i a l e m
d f n b m e
e o g k c d

In turn, this matrix can be extended also in a unique way to:

a b c f g h d e i n o l j k m −
b a i d j k f o c b e n g h − m
c i a l e m n g b d j f o − h k
d f n b m e a h l c k i − o g j
e o g k c d h a j m b − i f n l

which is a complete, connected and signable matrix. This contra-
dicts that A is connected.

4. Now assume that A is of column type 4. Then w has exactly four
intercalations and ocuppies exactly four coordinates of the first
column of A. Then A has the substructure:

a b c
b a d
c a d
d b c
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We can fill that matrix in a unique way as follows:

a b c e f
b a g d h
c g a h d
d e f b c

(a) If in the fifth row of this submatrix appears one of its colors,
then we obtain the only 5×5 intercalate matrix with frecuen-
cies {2, 3, 3, 3, 3, 3, 4, 4}, that can be extended in a unique way
to a 5× 8 complete, connected and signable matrix. This is
a contradiction.

(b) One of the colors e or g of the second column is in w, then
without loss of generality we assume it is g. Then g must
appear in a new column. If

a b c e f h
b a g d h f
c g a h d e
d e f b c g

then we obtain a 4 × 6 matrix with 12 intercalations whose
symmetric difference is empty, four of them are in the first
column. This contradicts the minimality of A. Then g must
be also in a new row:

a b c e f −
b a g d h −
c g a h d −
d e f b c −
− − − − − g

This implies in particular that g can only appear three times
in A, then every intercalation containing it must be in w. We
can complete this submatrix in the unique way:

a b c e f i
b a g d h j
c g a h d k
d e f b c l
m k j n o g
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At least one of i, l is in w, and then it must appear at least
three times in A. This submatrix can be extended with a
column containing at least one of i, l appearing in the second,
third or fifth row. The new submatrix can be extended in
a unique way to a 5 × 16 complete, connected and signable
matrix, which is a contradiction.

This ends the proof of the theorem. 2

Corollary 5.1.5 Let A be an intercalate matrix of type (r, s, n) with
r ≤ 5, then n ≥ r ◦ s.

5.2 The 32× 32 order

The following result is well known and shows an alternative way to
construct the Cayley’s table of D:

Lemma 5.2.1 Let N be an r×s matrix such that aij is the least natural
that does not appear in the set {ai0, . . . , ai,j−1} ∪ {a0j , . . . , ai−1,j}, then
N is the r × s main submatrix of D.

Proof: We will show by induction on i that aij = i ⊕ j. For i = 0
it is clear that a0j = j = 0 ⊕ j. Assume that ai′j = i′ ⊕ j for all
i′ < i and that aij′ = i ⊕ j′ for all j′ < j. It is elementary that
l = i⊕ j /∈ {ai0, . . . , ai,j−1} ∪ {a0j , . . . , ai−1,j} = {i⊕ 0, . . . i⊕ (j − 1)} ∪
{0⊕ j, . . . , (i− 1)⊕ j}.

We only need to show that every n < l is in that set. Let k such
that i, j < 2k and consider the binary expansions of i, j, l, n. Let m be
the greatest integer such that nm 6= lm. As n < l, it is easy to see that
nm = 0 and that lm = 1. This implies that im ⊕ jm = 1, that is, one of
{im, jm} is 1 and the other 0. Assume without loss of generality that
im = 0 and jm = 1 and consider the integer j′ < j with binary expansion
jk, . . . , jm+1, 0, im−1⊕nm−1, . . . , i0⊕n0. Then, aij′ = i⊕ j′ = n and we
are done. 2

We will also need the following:

Lemma 5.2.2 For every r, s we have r + s− 1 ≥ r ◦ s.

Proof: Let us assume that r, s ≤ 2t. We will do the proof by induction
on t. For t = 0 it is true. Assume that the inequality is true for every
r, s ≤ 2t. Now consider r, s ≤ 2t+1. If r, s ≤ 2t we are done. If
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r ≤ 2t < s ≤ 2t+1 let z = s−2t. Then r◦s = 2t+r◦z ≤ 2t+r+z−1 =
r + s− 1. Finally, if 2t < r, s ≤ 2t+1 then r ◦ s = 2t+1 < r + s and then
r ◦ s ≤ r + s− 1. 2

Now assume that Yuzvinsky’s conjecture is false. Let A of type
(r, s, n) be a counterexample with minimal r+ s, that is, with n < r ◦ s
and let N be the r × s main submatrix of D with type (r, s, r ◦ s). Let
c = r ◦ s− 1.

Suppose that color c is in the p × q main submatrix of N , either
with p < r or q < s. Then, by the minimality of A we have that this
submatrix is optimal with type (p, q, c + 1), but then the p × q main
submatrix of A with m ≤ n colors has at least c + 1 colors, that is,
c + 1 ≤ m ≤ n < c + 1, which is a contradiction. Then the color c
appears only in the bottom right corner of N .

As c has frequency 1, there are no intercalations in N containing it,
and we have that all colors in the last row and column are distinct, so
there is at least (r − 1) + (s− 1) + 1 = r + s− 1 colors. This, together
with the second lemma, says that r◦s = r+s−1 and then n ≤ r+s−2.

Now, it is easily seen that color c − 1 must appear either in the
r × (s − 1) or the (r − 1) × s main submatrix of N in such a way that
either r ◦ (s − 1) or (r − 1) ◦ s is equal to r + s − 2. In any case, that
submatrix is optimal and any r× s matrix has at least r+ s− 2 colors,
and finally n = r+ s− 2. It is also clear that color ars has frequency at
least two (otherwise A would have at least r + s− 1 colors.)

As A has n < r ◦ s then A is not dyadic and (r, s, n) is not pure.
Then there exists k with n − r < k < s such that

(n
k

)
≡ 1. Then

s − 2 < k < s and finally k = s − 1. From here we can see that
(r − 1)⊕ (s− 1) = (r − 1) + (s− 1).

If we want to extend Yuzvinsky’s conjecture up to r, s ≤ 32 it is
enough to show that there are no intercalate matrices of the following
37 types:

• (17, s, 15 + s) for 6 ≤ s ≤ 16,

• (18, 2s+ 1, 17 + 2s) for 3 ≤ s ≤ 7,

• (19, 6, 23), (19, 9, 26), (19, 10, 27), (19, 13, 30), (19, 14, 31),

• (20, 9, 27), (20, 13, 31),

• (21, s, 19 + s) for 9 ≤ s ≤ 12,

• (22, 9, 29), (22, 11, 31), (23, 9, 30), (23, 10, 31), (24, 9, 31),
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• (25, s, 23 + s) for 6 ≤ s ≤ 8,

• (26, 7, 31), (27, 6, 31)

as they are the only types with r, s ≤ 32 such that r ◦ s = r+ s− 1 and
are not covered by the previous cases.

We should note that in 25 of these cases we have that r ◦ s− 1 is a
prime power and we may use the reformulation of the conjecture given
in section 4.
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Bernal and Francisco Zaragoza, On Yuzvinsky’s conjecture about
intercalate matrices. Preprint (1997).

[10] Shalom Eliahou and Michel Kervaire, Sumsets in vector spaces
over finite fields. Preprint (1996).

[11] Shalom Eliahou and Michel Kervaire, A short proof of Yuzvinsky’s
theorem. Preprint (1997).

[12] Fred Galvin, The list chromatic index of a bipartite multigraph,
Journal of Combinatorial Theory, Series B 63 (1995), 153–158.

[13] H. Hopf, Ein topologischer beitrag zur reellen algebra, Comment.
Math. Helv. 13 (1941), 219–235.

[14] J. C. M. Janssen, The Dinitz problem solved for rectangles, Bul-
letin of the American Mathematical Society, 29 (1993), no. 2,
243–249.

[15] Katherine Heinrich and W. D. Wallis, The maximum number of
intercalates in a latin square. Combinatorial Mathematics VIII,
Lecture Notes in Math., Springer, (1981), 221–233.

[16] T. Y. Lam and T. L. Smith, On Yuzvinsky’s monomial pairings.
Quart. J. Oxford (2) 44 (1993), 215–237.

[17] Irasema Sarmiento, Non intercalate polynomial. Personal commu-
nication, (1997).



INTERCALATE MATRICES AND ALGEBRAIC VARIETIES 81

[18] D. B. Shapiro, Products of sums of squares, Expositiones Math. 2
(1984), 235–261.

[19] T. L. Smith and Paul Y. H. Yiu, Construction of sums of square
formulae with integer coefficients, Bol. Soc. Mat. Mex. 37 (1992),
479–495.
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