LOOP SPACES OF CONFIGURATION SPACES *

SAMUEL GITLER ${ }^{1}$

Abstract

This paper gives a brief introduction to the theory of configuration spaces. Some recent results about the homology of their loop spaces are also presented. We also discuss their relationship to Vassiliev invariants for knots.

1991 Mathematics Subject Classification: 55P35, 55R99.
Keywords and phrases: Configuration spaces, Loop spaces, Poincaré series, Hopf algebra, Vassiliev invariants of knots.

In this note, we want to give an idea how the loop spaces of configuration spaces give rise to higher dimensional braidings, and in particular its relation to braids. Recall that if M is a connected $m-$ manifold, then $F(M, k)$ is the open subspace of M^{k} :

$$
F(M, k)=\left\{\left(x_{1}, \cdots, x_{k}\right) \mid x_{i} \in M, x_{i} \neq x_{j}, \text { if } i \neq j\right\}
$$

Of course this definition does not require M to be a manifold. However, if Q_{k} denotes a set of k distinct points in M, and M is a manifold, we have locally trivial fibrations:

$$
\left.\begin{array}{l}
M-Q_{k} \rightarrow F(M, k+1) \rightarrow F(M, k) \\
F\left(M-Q_{1}, k\right) \rightarrow F(M, k+1) \rightarrow M \tag{I}
\end{array}\right\}
$$

[^0]The spaces $M-Q_{k}$ are all homeomorphic and its homotopy type is that of $\left(M-Q_{1}\right) \vee \bigvee_{k-1} S^{m-1}$. Typically, if $M=D^{m}, D^{m}-Q_{k} \approx \bigvee_{k} S^{m-1}$.

The homology and cohomology of $F(M, k)$ are not known for general M. In fact, if M is closed and compact, the only example which is known is $M=S^{n}$. The answer is not known even for $S^{m} \times S^{n}$. However, for manifolds like $M \times \mathbb{R}$, the answer is known. In particular, it is known for $F\left(\mathbb{R}^{n}, k\right)$.

In general, we construct maps $A_{i j}: S^{m-1} \rightarrow F\left(\mathbb{R}^{m}, k\right)$, for $k \geq i>$ $j \geq 1$ as follows: let $q_{l}=4 l e_{0}, l=1,2, \cdots, k-1$. Let now $x \in S^{m-1}$ be of norm 1 and define

$$
A_{i j}(x)=\left(z_{1}, \cdots, z_{m}\right),
$$

where $z_{l}=q_{l}$ if $l \neq i$, and $z_{i}=x+q_{j}$. If $x_{0} \in X$, let $\Omega X=\operatorname{Map}_{*}\left(S^{1}, X\right)=$ $\left\{f: S^{1} \rightarrow X \mid f(u)=x_{0}\right\}$. Recall that if $F \rightarrow E \rightarrow B$ is a fibration, then

$$
\Omega F \rightarrow \Omega E \rightarrow \Omega B
$$

is again a fibration. In fact, since ΩF is an H -group, this is a principal fibration, and we have:

Suppose $\Omega F \rightarrow \Omega E \xrightarrow{\pi} \Omega B$ has a cross-section $s, \pi s=\mathrm{id}$, then $\Omega F \times$ $\Omega B \xrightarrow{1 \times s} \Omega F \times \Omega E \xrightarrow{\mu} \Omega E$ induces isomorphisms of homotopy groups, so that if B, E and F are of the homotopy type of CW-complexes, $\Omega F \times \Omega B \rightarrow \Omega E$ is a homotopy equivalence. Consider now M to be a punctured manifold, $M=M^{\prime}-Q_{1}$, where M^{\prime} is a manifold. We construct a cross-section to $F(M, k+1) \rightarrow M$ as follow: choose a neighborhood of Q_{1}, which is a unit disc D, and take k distinct points $\left(y_{1}, \cdots, y_{k}\right)$ in D. Then the required cross-section is defined by

$$
s(x)= \begin{cases}\left(x, y_{1}, \cdots, y_{k}\right) & \text { if } \quad x \notin D, \\ \left(x,|x| y_{1}, \cdots,|x| y_{k}\right) & \text { if } \quad x \in D .\end{cases}
$$

Then, $\Omega F(M, k+1) \xrightarrow{\Omega \pi} \Omega M$ has also a cross-section Ωs, so we have a homotopy equivalence $\Omega F\left(M-Q_{1}, k\right) \times \Omega M \rightarrow \Omega F(M, k+1)$. Proceeding now with $F\left(M-Q_{1}, k\right)$ we obtain:

Theorem A For a punctured manifold M we have:

$$
\Omega F(M, k) \approx(\Omega M)^{k} \times \Omega F\left(\mathbb{R}^{m}, k\right) \times D(M, k)
$$

where

$$
D(M, k) \approx \prod_{i=1}^{k-1} \Omega \Sigma\left[\Omega M \wedge \Omega\left(\bigvee_{i=1}^{k-1} S^{m-1}\right)\right]
$$

This homotopy equivalence, however, is not a homotopy equivalence of H -spaces, i.e. it does not preserve the multiplications.

Corollary If M is punctured manifold, then

$$
\Sigma \Omega F(M, k) \approx\left(\bigvee \Sigma^{j_{\beta}}(\Omega M)^{\left(i_{\alpha}\right)}\right) \vee\left(\bigvee S^{k_{\gamma}}\right)
$$

for suitable sets I, J and K, with $j_{\beta} \in J, i_{\alpha} \in I, k_{\gamma} \in K$.
\mathbb{R}^{m} is a punctured manifold, so we also have:

$$
\Omega F\left(\mathbb{R}^{m}, k\right) \approx \prod_{j=1}^{k-1} \Omega\left(\bigvee_{t=1}^{j} S^{m-1}\right)
$$

where this decomposition is not as H -spaces.
In order to describe the homology $H_{*}\left(\Omega F\left(\mathbb{R}^{m}, k\right) ; \mathbb{Z}\right)$, recall that the multiplication in ΩX and the diagonal $\Omega X \rightarrow \Omega X \times \Omega X$ make $H_{*}\left(\Omega F\left(\mathbb{R}^{m}, k\right) ; \mathbb{Z}\right)$ into a Hopf algebra. The primitives form a Lie algebra. If $B_{i j}: S^{m-2} \rightarrow \Omega F\left(\mathbb{R}^{m}, k\right)$ are the maps adjoint to the $A_{i j}$, we let

$$
Y B(m-2, k)
$$

denote the Lie algebra with generators $B_{i j}, k \geq i>j>k \geq 1$ of dimension $m-2$, modulo the following relations:

$$
\begin{array}{ll}
{\left[B_{i j}, B_{s t}\right]=0,} & \{i, j\} \wedge\{s, t\}=\emptyset ; \\
{\left[B_{i j}, B_{j]}\right]=\left[B_{i j}, B_{i t}\right],} & i>j>t ; \\
{\left[B_{i j}, B_{s j}\right]=\left[B_{i j}, B_{i s}\right],} & i>s>j .
\end{array}
$$

These are the so-called infinitesimal braid relations or the infinitesimal Yang-Baxter relations. Thus YB stands for Yang-Baxter. This Lie algebra has appeared in several different contexts recently.

Now recall that if L is a Lie algebra, its universal enveloping algebra $U(L)$ is $T(L) / I$, where $T(L)$ is the tensor algebra on L and I is the two sided ideal generated by elements $x \otimes y-(-1)^{|x||y|} y \otimes x-[x, y]$ where $|\mid$ is dimension and $x, y \in L$.

The following result has also been obtained by Fadell-Huseini:
Theorem B As a Hopf algebra

$$
H_{*}\left(\Omega F\left(\mathbb{R}^{m}, k\right)\right)=U(Y B(m-2, k))
$$

where $m \geq 3$ and $Y B(m-2, k)$ is the set of primitives.
In the decomposition of Theorem A, we have maps:

$$
\begin{aligned}
& \Omega M \xrightarrow{\theta_{k}} \Omega F(M, k) \\
& \Omega F\left(\mathbb{R}^{m}, k\right) \rightarrow \Omega F(M, k) \\
& D(M, k) \rightarrow \Omega F(M, k)
\end{aligned}
$$

that are H -maps. Thus, in order to determine the Pontryagin ring structure of $H_{*}(\Omega F(M, k) ; R), R$ say a field, we need to study the commutators among the different factors: If $m \in H_{*}(\Omega M ; R)$, we denote by $m_{i}=1 \otimes \cdots \otimes 1 \otimes m \otimes 1 \otimes \cdots \otimes 1$, where m is in the $i^{t h}$ position.

We have:
Proposition 1 a) $\left[B_{i j}, m_{l}\right]=0$ if $\ell \notin\{i, j\}$.
b) If m is primitive in $H_{*}(\Omega M ; R)$, then $\left[B_{i j}, m_{i}+m_{j}\right]=0$ provided

- $R=\mathbb{Z} / 2$ and $w_{m-1}(\tau M)=0$, where τM is the tangent bundle to M and w_{m-1} is its $(m-1)$ Stiefel-Whitney class.
- $R=\mathbb{Z} / p$ or \mathbb{Q} and $\chi(\tau M)=0$ where p is an odd prime and $\chi(\tau M)$ is the Euler class of τM.

Proposition $2\left[m_{i}, m_{j}\right]=0$ in the following cases:
a) $M=N \times \mathbb{R}^{1}$
b) $\operatorname{dim} M>2$ (homological dim of M)
c) $M=M_{1} \times M_{2} \times M_{3}$

However, if $M=S^{n_{1}} \times S^{n_{2}}$, we can show that $\left[m_{i}, m_{j}\right] \neq 0$.
Now suppose that M is a manifold such that

$$
H_{*}\left(\Omega\left(M-Q_{1}\right) ; R\right) \rightarrow H_{*}(\Omega M ; R)
$$

is an epimorphism. We call such a manifold an $e R$-manifold ($e R-$ epimorphism). The following are examples of $e R$-manifolds:
a) If M is a punctured manifold, it is an $e R$-manifold for all R.
b) If $M=M_{1} \times M_{2}, M$ is an $e R$-manifold for R such that $H_{*}\left(\Omega\left(M_{1} \times\right.\right.$ $\left.M_{2}\right) \cong \cong H_{*}\left(\Omega M_{1}\right) \otimes H_{*}\left(\Omega M_{2}\right)$.
c) If $R=\mathbb{Q}$ and M is compact closed with $H^{*}(M ; \mathbb{Q})$ having more than one cohomology generator [3].
d) If M is the connected sum of simply connected manifolds, where at least one of the summands is an $e R$-manifold.
e) Certain choices of homogeneous spaces G / H are $e R$-manifolds.
f) Spheres and complex projective spaces are not $e \mathbb{Q}$-manifolds.
g) $M=N \times \mathbb{R}$.

We now have:
Theorem C If M is an eR-manifold and M is 1-connected, then there is a short exact sequence of Hopf algebras:
$1 \rightarrow H_{*}\left(\Omega F\left(M-Q_{1}, k-1\right) ; R\right) \rightarrow H_{*}(\Omega F(M, k), R) \rightarrow H_{*}(\Omega M ; R) \rightarrow 1$, furthermore $M-Q_{i}, i \geq 1$, is an $e R$-manifold and

$$
H_{*}(\Omega F(M, k) ; R) \approx \bigotimes_{i=0}^{k-1} H_{*}\left(\Omega\left(M-Q_{i}\right) ; R\right)
$$

is an isomorphism of graded R-modules, while the inclusion $M-Q_{1} \subset$ M induces a surjection of Hopf algebras:

$$
H_{*}\left(\Omega F\left(M-Q_{1}, k\right) ; R\right) \rightarrow H_{*}(\Omega F(M, k) ; R) .
$$

Thus the structure of Hopf algebra of $H_{*}(\Omega F(M, k) ; R)$ can be determined by that of $H_{*}\left(\Omega F\left(M-Q_{1}, k\right) ; R\right)$. As an interesting example, $S U(n)$ rationally is a product of odd spheres $S^{3} \times \cdots \times S^{2 n-1}$, yet $H_{*}(\Omega F(S U(n), k) ; \mathbb{Q})$ is twisted for $n=3$, but not for $n \neq 3$.

Let us now recall the braid group. If we look at $F\left(\mathbb{R}^{2}, k\right)$, it turns out to be a $K(\pi, 1)$-space, where $\pi=B_{k}$ is Artin's pure braid group on k -strands. It is generated by x_{1}, \cdots, x_{k} subject to the following relations:

$$
\begin{gathered}
x_{i} x_{j} x_{i}^{-1}=x_{j} \quad \text { if } \quad|i-j|>1 \\
x_{j} x_{i} x_{j}^{-1}=x_{i} x_{j} x_{i}^{-1} \quad \text { if } \quad|i-j|=1
\end{gathered}
$$

$B_{k}=\pi_{0}\left(\Omega F\left(\mathbb{R}^{2}, k\right)\right)$.
There is a theorem of Alexander [1] saying that there is a way to close a pure braid, to produce a knot

If you do it for all k, you produce all knots. If k is the space of all knots, we thus have

$$
A: \amalg B_{k} \rightarrow K
$$

onto and one knows when two pure braids produce the same knot: $A(x)=A(y)$, produce the same knot if $x=y x_{i}$ or when $x=a y a^{-1}$ for some $a \in B_{k}$. We have a complete result on Vassiliev invariants of the pure braids.

Let $V\left(B_{n}\right)$ be set of invariants over \mathbb{C} of the pure braids with $\mathrm{n}-$ strands. We can extend to pure braids B_{n}^{1} with one double point:

and thus extend to B_{n}^{k} the set of pure braids on n -strands with k double points. An invariant v is called a Vassiliev invariant of order k if v
vanishes on all pure braids having more than k double points. Let V_{k}^{n} be the vector space of Vassiliev invariants on B_{k} of order k.

Let A_{k} be the complex vector space spanned by horizontal chord diagrams: a horizontal chord diagram consists of n vertical strands

labeled $1, \cdots, n$ say, and k chords, each chord joining a pair of strands. We take them ordered both with an arrow and their order of appearance in the diagram.

Let A_{k}^{n} be the quotient of \tilde{A}_{k}^{n} by the relations (I) which are called in the context of knot theory the $4 T$ relations and framing independence. Then Kohno among others has proved that $V_{k}^{n} / V_{k-1}^{n} \approx \operatorname{Hom}_{\mathbb{C}}\left(A_{k}^{n}, \mathbb{C}\right)$.

What we obtain is:
Theorem D There is an isomorphism of Hopf algebras

$$
H_{*}\left(\Omega F\left(\mathbb{R}^{3}, n\right) ; \mathbb{C}\right) \approx A_{*}^{n}
$$

and the Poincare series of $H_{*}\left(\Omega F\left(\mathbb{R}^{3}, n\right) ; \mathbb{Z}\right)$ is

$$
P\left(H_{*}\left(\Omega F\left(\mathbb{R}^{3}, n\right), t\right)=\left(\prod_{k=1}^{n-1}(1-k t)\right)^{-1}\right.
$$

Moreover, each A_{k}^{n} is spanned by monomials of length k in the $B_{i j}$.

Samuel Gitler

Department of Mathematics	Departamento de Matemáticas
University of Rochester	CINVESTAV-IPN
Rochester, New York	Apdo. Postal 14-740
gitler@math.rochester.edu	México D.F. 07000, México.
	sgitler@math.cinvestav.mx

References

[1] J.W. Alexander, A lemma on systems of knotted curves. Proc. Nat. Acad. Sci. USA 9 (1923) 93-95.
[2] E. Artin, Theory of braids Ann. of Math. (2) 48 (1947) 643-649.
[3] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 119-126.
[4] T. Kohno, Vassiliev invariants and de Rham complex on the space of knots Contemp. Math. 179 Amer. Math. Soc. (1994) 123-138.

[^0]: *Invited article. All the new results that appear here are part of joint work with Frederick R. Cohen.
 ${ }^{1}$ Professor, University of Rochester. Investigador Titular, CINVESTAV-IPN. Miembro del Colegio Nacional.

