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LOOP SPACES OF

CONFIGURATION SPACES ∗

SAMUEL GITLER 1

Abstract

This paper gives a brief introduction to the theory of configuration
spaces. Some recent results about the homology of their loop
spaces are also presented. We also discuss their relationship to
Vassiliev invariants for knots.
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In this note, we want to give an idea how the loop spaces of configu-
ration spaces give rise to higher dimensional braidings, and in particular
its relation to braids. Recall that if M is a connected m–manifold, then
F (M,k) is the open subspace of Mk:

F (M,k) = {(x1, · · · , xk) | xi ∈M, xi 6= xj , if i 6= j}.

Of course this definition does not require M to be a manifold. However,
if Qk denotes a set of k distinct points in M , and M is a manifold, we
have locally trivial fibrations:

M −Qk → F (M,k + 1)→ F (M,k)
F (M −Q1, k)→ F (M,k + 1)→M

}
(I)

∗Invited article. All the new results that appear here are part of joint work
with Frederick R. Cohen.
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The spaces M−Qk are all homeomorphic and its homotopy type is that
of (M −Q1) ∨

∨
k−1

Sm−1. Typically, if M = Dm, Dm −Qk ≈
∨
k

Sm−1.
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The homology and cohomology of F (M,k) are not known for general
M . In fact, ifM is closed and compact, the only example which is known
is M = Sn. The answer is not known even for Sm × Sn. However, for
manifolds like M × R, the answer is known. In particular, it is known
for F (Rn, k).

In general, we construct maps Aij : Sm−1 → F (Rm, k), for k ≥ i >
j ≥ 1 as follows: let ql = 4le0, l = 1, 2, · · · , k − 1. Let now x ∈ Sm−1

be of norm 1 and define

Aij(x) = (z1, · · · , zm),

where zl = ql if l 6= i, and zi = x+qj . If x0 ∈ X, let ΩX=Map∗(S
1, X) =

{f : S1 → X | f(u) = x0}. Recall that if F → E → B is a fibration,
then

ΩF → ΩE → ΩB

is again a fibration. In fact, since ΩF is an H–group, this is a principal
fibration, and we have:

ΩF × ΩE
µ→ ΩE

@@R ��	

ΩB

Suppose ΩF → ΩE
π→ ΩB has a cross-section s, πs =id, then ΩF ×

ΩB
1×s→ ΩF × ΩE

µ→ ΩE induces isomorphisms of homotopy groups,
so that if B, E and F are of the homotopy type of CW–complexes,
ΩF × ΩB → ΩE is a homotopy equivalence. Consider now M to be
a punctured manifold, M = M ′ − Q1, where M ′ is a manifold. We
construct a cross–section to F (M,k + 1) → M as follow: choose a
neighborhood of Q1, which is a unit disc D, and take k distinct points
(y1, · · · , yk) in D. Then the required cross–section is defined by

s(x) =

{
(x, y1, · · · , yk) if x /∈ D,
(x, |x|y1, · · · , |x|yk) if x ∈ D.
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Then, ΩF (M,k + 1)
Ωπ−→ ΩM has also a cross–section Ωs, so we have

a homotopy equivalence ΩF (M −Q1, k)× ΩM → ΩF (M,k + 1). Pro-
ceeding now with F (M −Q1, k) we obtain:

Theorem A For a punctured manifold M we have:

ΩF (M,k) ≈ (ΩM)k × ΩF (Rm, k)×D(M,k)

where

D(M,k) ≈
k−1∏
i=1

ΩΣ

[
ΩM ∧ Ω

(
k−1∨
i=1

Sm−1

)]
.

This homotopy equivalence, however, is not a homotopy equivalence
of H–spaces, i.e. it does not preserve the multiplications.

Corollary If M is punctured manifold, then

ΣΩF (M,k) ≈
(∨

Σjβ (ΩM)(iα)
)
∨ (
∨
Skγ )

for suitable sets I, J and K, with jβ ∈ J, iα ∈ I, kγ ∈ K.

Rm is a punctured manifold, so we also have:

ΩF (Rm, k) ≈
k−1∏
j=1

Ω(

j∨
t=1

Sm−1)

where this decomposition is not as H–spaces.

In order to describe the homology H∗(ΩF (Rm, k);Z), recall that
the multiplication in ΩX and the diagonal ΩX → ΩX × ΩX make
H∗(ΩF (Rm, k);Z) into a Hopf algebra. The primitives form a Lie alge-
bra . If Bij : Sm−2 → ΩF (Rm, k) are the maps adjoint to the Aij , we
let

Y B(m− 2, k)

denote the Lie algebra with generators Bij , k ≥ i > j > k ≥ 1 of
dimension m− 2, modulo the following relations:

[Bij , Bst] = 0, {i, j} ∧ {s, t} = ∅;
[Bij , Bjt] = [Bij , Bit] , i > j > t;
[Bij , Bsj ] = [Bij , Bis] , i > s > j.
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These are the so–called infinitesimal braid relations or the infinitesimal
Yang–Baxter relations. Thus Y B stands for Yang–Baxter. This Lie
algebra has appeared in several different contexts recently.

Now recall that if L is a Lie algebra, its universal enveloping algebra
U(L) is T (L)/I, where T (L) is the tensor algebra on L and I is the two
sided ideal generated by elements x⊗ y − (−1)|x||y|y ⊗ x− [x, y] where
| | is dimension and x, y ∈ L.

The following result has also been obtained by Fadell–Huseini:

Theorem B As a Hopf algebra

H∗(ΩF (Rm, k)) = U(Y B(m− 2, k))

where m ≥ 3 and Y B(m− 2, k) is the set of primitives.

In the decomposition of Theorem A, we have maps:

ΩM
θk→ ΩF (M,k)

ΩF (Rm, k)→ ΩF (M,k)

D(M,k)→ ΩF (M,k)

that are H–maps. Thus, in order to determine the Pontryagin ring
structure of H∗(ΩF (M,k);R), R say a field, we need to study the com-
mutators among the different factors: If m ∈ H∗(ΩM ;R), we denote by
mi = 1⊗ · · · ⊗ 1⊗m⊗ 1⊗ · · · ⊗ 1, where m is in the ith position.

We have:

Proposition 1 a) [Bij ,ml] = 0 if ` /∈ {i, j}.
b) If m is primitive in H∗(ΩM ;R), then [Bij ,mi +mj ] = 0 provided

• R = Z/2 and wm−1(τM) = 0, where τM is the tangent bundle to
M and wm−1 is its (m− 1) Stiefel-Whitney class.

• R = Z/p or Q and χ(τM) = 0 where p is an odd prime and
χ(τM) is the Euler class of τM .

Proposition 2 [mi,mj ] = 0 in the following cases:

a) M = N × R1

b) dim M > 2 (homological dim of M)
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c) M = M1 ×M2 ×M3

However, if M = Sn1 × Sn2, we can show that [mi,mj ] 6= 0.

Now suppose that M is a manifold such that

H∗(Ω(M −Q1);R)→ H∗(ΩM ;R)

is an epimorphism. We call such a manifold an eR–manifold (eR–
epimorphism). The following are examples of eR–manifolds:

a) If M is a punctured manifold, it is an eR–manifold for all R.

b) If M = M1×M2, M is an eR–manifold for R such that H∗(Ω(M1×
M2)) ∼= H∗(ΩM1)⊗H∗(ΩM2).

c) If R = Q and M is compact closed with H∗(M ;Q) having more
than one cohomology generator [3].

d) If M is the connected sum of simply connected manifolds, where
at least one of the summands is an eR–manifold.

e) Certain choices of homogeneous spaces G/H are eR–manifolds.

f) Spheres and complex projective spaces are not eQ–manifolds.

g) M = N × R.

We now have:

Theorem C If M is an eR–manifold and M is 1–connected, then there
is a short exact sequence of Hopf algebras:

1→ H∗(ΩF (M−Q1, k−1);R)→ H∗(ΩF (M,k), R)→ H∗(ΩM ;R)→ 1,

furthermore M −Qi, i ≥ 1, is an eR–manifold and

H∗(ΩF (M,k);R) ≈
k−1⊗
i=0

H∗(Ω(M −Qi);R)

is an isomorphism of graded R–modules, while the inclusion M −Q1 ⊂
M induces a surjection of Hopf algebras:

H∗(ΩF (M −Q1, k);R)→ H∗(ΩF (M,k);R).
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Thus the structure of Hopf algebra of H∗(ΩF (M,k);R) can be de-
termined by that of H∗(ΩF (M −Q1, k);R). As an interesting example,
SU(n) rationally is a product of odd spheres S3 × · · · × S2n−1, yet
H∗(ΩF (SU(n), k);Q) is twisted for n = 3, but not for n 6= 3.

Let us now recall the braid group. If we look at F (R2, k), it turns
out to be a K(π, 1)–space, where π = Bk is Artin’s pure braid group
on k–strands. It is generated by x1, · · · , xk subject to the following
relations:

xixjx
−1
i = xj if | i− j |> 1

xjxix
−1
j = xixjx

−1
i if | i− j |= 1

Bk = π0(ΩF (R2, k)).

There is a theorem of Alexander [1] saying that there is a way to
close a pure braid, to produce a knot

q q q
q q q

-
q q q
q q q

If you do it for all k, you produce all knots. If k is the space of all
knots, we thus have

A : qBk → K

onto and one knows when two pure braids produce the same knot:
A(x) = A(y), produce the same knot if x = yxi or when x = aya−1

for some a ∈ Bk. We have a complete result on Vassiliev invariants of
the pure braids.

Let V (Bn) be set of invariants over C of the pure braids with n–
strands. We can extend to pure braids B1

n with one double point:

v
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and thus extend to Bk

n the set of pure braids on n–strands with k double
points. An invariant v is called a Vassiliev invariant of order k if v
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vanishes on all pure braids having more than k double points. Let V n
k

be the vector space of Vassiliev invariants on Bk of order k.

Let Ak be the complex vector space spanned by horizontal chord
diagrams: a horizontal chord diagram consists of n vertical strands

-
-

-
-

labeled 1, · · · , n say, and k chords, each chord joining a pair of strands.
We take them ordered both with an arrow and their order of appearance
in the diagram.

Let Ank be the quotient of Ãnk by the relations (I) which are called in
the context of knot theory the 4T relations and framing independence.
Then Kohno among others has proved that V n

k /V
n
k−1 ≈ HomC(Ank ,C).

What we obtain is:

Theorem D There is an isomorphism of Hopf algebras

H∗(ΩF (R3, n);C) ≈ An∗

and the Poincare series of H∗(ΩF (R3, n);Z) is

P (H∗(ΩF (R3, n), t) =

(
n−1∏
k=1

(1− kt)

)−1

.

Moreover, each Ank is spanned by monomials of length k in the Bij.
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