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Average optimal strategies in Markov games

under a geometric drift condition ∗

Heinz-Uwe Küenle

Abstract

Zero-sum stochastic games with the expected average cost crite-
rion and unbounded stage cost are studied. The state space is an
arbitrary Borel set in a complete separable metric space but the
action sets are finite. It is assumed that the transition probabili-
ties of the Markov chains induced by stationary strategies satisfy
a certain geometric drift condition. It is shown that the aver-
age optimality equation has a solution and that both players have
optimal stationary strategies.
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1 Introduction

In this paper two-person stochastic games with the expected average
cost criterion are studied. The state space is a standard Borel space,
that is, an arbitrary Borel set in a complete separable metric space.
The action sets of both players are finite. Such a stochastic game can
be described in the following way: The state xn of a dynamic system
is periodically observed at times n = 1, 2, . . .. After an observation at
time n the first player chooses an action an from the action set A(xn)
and afterwards the second player chooses an action bn from the action
set B(xn) dependent on the complete history of the system at this time.
The first player must pay cost k1(xn, an, bn), the second player must pay
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16 HEINZ-UWE KÜENLE

k2(xn, an, bn), and the system moves to a new state xn+1 in the state
space X according to the transition probability p(· | xn, an, bn).

Stochastic games with Borel state space and average cost criterion
are considered by several authors. Related results are given by Maitra
and Sudderth [7], [8], [9], Nowak [13], Rieder [15] and Küenle [6] in
the case of bounded costs (payoffs). The case of unbounded payoffs is
treated by Nowak [14] and Küenle [4]. The assumptions in this paper
concerning the transition probabilities are related to Nowak’s assump-
tions: Nowak assumes that there is a Borel set C ∈ X and for every
stationary strategy pair (π∞, ρ∞) a measure µ such that C is µ-small
with respect to the Markov chain induced by this strategy pair. We
assume that C is only a µ-petite set with respect to a resolvent of this
Markov chain; as against this, we demand that µ is independent of the
corresponding strategy pair. (For the definition of ”small sets” and
”petite sets” see [10].)

The paper is organised as follows: In Section 2 the mathematical
model of Markov games is presented. Section 3 contains the assump-
tions on the transition probabilities and on the stage costs, and also some
preliminary results. In Section 4 we study the expected average cost of
a fixed stationary strategy pair. We show that the Poisson equation
has a solution. In Section 5 we prove that the average cost optimal-
ity equation has a solution and both players have optimal stationary
strategies.

2 The Mathematical Model

In this section we introduce the mathematical model of the stochastic
game considered in this paper.

Definition 2.1
M = ((X, σX), (A, σA),A, (B, σB),B, p, k1, k2,E,F) is called a Markov
game if the elements of this tuple have the following meaning:

— (X, σX) is a standard Borel space, called the state space.

— A is a countable set and σA is the power set of A. A(x) ∈ A
denotes a finite set of actions of the first player for every x ∈ X.
A is called the action space of the first player and A(x) is called
the admissible action set of the first player at state x ∈ X.



AVERAGE OPTIMAL STRATEGIES IN MARKOV GAMES 17

— B is a countable set and σB is the power set of B. B(x) ∈ B
denotes a finite set of actions of the second player for every x ∈ X.
B is called the action space of the second player and B(x) is called
the admissible action set of the second player at state x ∈ X.

— p is a transition probability from σX×A×B to σX, the transition
law.

— ki, i = 1, 2 , are σX×A×B-measurable functions, called stage cost
functions.

— Let Hn = (X×A×B)n×X for n ≥ 1, H0 = X. h ∈ Hn is called
the history at time n.
A transition probability πn from σHn to σA with
πn(A(xn) | x0, a0, b0, . . . , xn) = 1 for all (x0, a0, b0, . . . , xn) ∈ Hn

is called a decision rule of the first player at time n.
A transition probability ρn from σHn×A to σB with
ρn(B(xn) | x0, a0, b0, . . . , xn) = 1 for all (x0, a0, b0, . . . , xn) ∈ Hn

is called a decision rule of the second player at time n.
A decision rule of the first [second] player is called Markov
iff a transition probability π̃n from σHn to σA [ρ̃n from
σHn to σB] exists such that πn(· | x0, a0, b0, . . . , xn) = π̃n(· | xn)
[ ρn(· | x0, a0, b0, . . . , xn) = ρ̃n(· | xn)] for all (x0, a0, b0, . . . , xn) ∈
Hn ×A. (Notation: We identify πn as π̃n and ρn as ρ̃n.)
E and F denote non-empty sets of Markov decision rules.

A decision rule of the first [second] player is called determin-
istic if a function en : Hn → A [fn : Hn → B] exists such
that πn(en(hn) | hn) = 1 for all hn ∈ Hn [ρn(fn(hn) | hn) = 1 for all
(hn) ∈ Hn ].

A sequence Π = (πn) or P = (ρn) of decision rules of the first or
second player is called a strategy of that player.
Strategies are called deterministic, or Markov iff all their decision rules
have the corresponding property.
A Markov strategy Π = (πn) or P = (ρn) is called stationary iff
π0 = π1 = π2 = . . . or ρ0 = ρ1 = ρ2 = . . .. (Notation: Π = π∞

or P = ρ∞.) We assume in this paper that the sets of all admissible
strategies are E∞ and F∞. Hence, only Markov strategies are allowed.
But by means of dynamic programming methods it is also possible to
get corresponding results for Markov games with larger sets of admis-
sible strategies. If E and F are the sets of all Markov decision rules
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(in the above sense) then we have a Markov game with perfect (or
complete) information. In this case the action set of the second player
may depend also on the present action of the first player. If E is the
set of all Markov decision rules but F is the set of all Markov deci-
sion rules which do not depend on the present action of the first player
then we have a usual Markov game with independent action choice. Let
Ω := X×A×B×X×A×B× . . . and Ki,N (ω) :=

∑N
j=0 k

i(xj , aj , bj)
for ω = (x0, a0, b0, x1, . . . ) ∈ Ω, i = 1, 2, N ∈ N. By means of the
Ionescu-Tulcea Theorem (see, for instance, [11]), it follows that there
exists a suitable σ-algebra F in Ω and for every initial state x ∈ X and
strategy pair (Π, P ), Π = (πn), P = (ρn), a unique probability mea-
sure Px,Π,P on F according to the transition probabilities πn, ρn and p.
Furthermore, Ki,N is F-measurable for all i = 1, 2, N ∈ N. We set

V i,N
ΠP (x) =

∫
Ω
Ki,N (ω)Px,Π,P (dω) (2.1)

and

Φi
ΠP (x) = lim inf

N→∞

1

N + 1
V i,N
ΠP (x) (2.2)

if the corresponding integrals exist.

Definition 2.2
A strategy pair (Π∗, P ∗) is called a Nash equilibrium pair iff

Φ1
Π∗P ∗ ≤ Φ1

ΠP ∗

Φ2
Π∗P ∗ ≤ Φ2

Π∗P

for all strategy pairs (Π, P ).

In this paper we will consider especially zero-sum Markov games, that
means k1 = −k2. In this case we call a Nash equilibrium pair also an
optimal strategy pair. We set k := k1, V N

ΠP := V 1,N
ΠP , ΦΠP := Φ1

ΠP .

3 Assumptions and Preliminary Results

In this paper we use the same notation for a substochastic kernel and
for the ”expectation operator” with respect to this kernel, that means:
If (Y, σY) and (Z, σZ) are standard Borel spaces, v : Y × Z → R a
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σY×Z-measurable function, and q a substochastic kernel from (Y, σY)
to (Z, σZ) then we put

qv(y) :=

∫
Z
q(dz | y)v(y, z) for all y ∈ Y

if this integral is well-defined.
Furthermore, we define the operator T by

Tu = k + pu

for all σX-measurable u : X → R for which pu exists, that means,

Tu(x, a, b) = k(x, a, b) +

∫
X
p(dξ | x, a, b)u(ξ)

for all x ∈ X, a ∈ A, b ∈ B.

Let Π = (πn) ∈ E∞, P = (ρn) ∈ F∞. If V N
ΠP exists, then we get

V N
ΠP = π0ρ0k +

N∑
j=1

π0ρ0p · · · pπjρjk.

For π ∈ E, ρ ∈ F we put (πρp)n := πρp(πρp)n−1 where (πρp)0 denotes
the identity. Let ϑ ∈ (0, 1). We set for every π ∈ E, ρ ∈ F, x ∈ X, and
Y ∈ σX

Qϑ,π,ρ(Y | x) := (1− ϑ)

∞∑
n=0

ϑn(πρp)nIY (x)

where IY is the characteristic function of the set Y .

We remark that for a stationary strategy pair (π∞, ρ∞) the transi-
tion probability Qϑ,π,ρ is a resolvent of the corresponding Markov chain.

Assumption 3.1 There are: a nontrivial measure µ on σX; a set C ∈
σX; a σX-measurable function W ≥ 1; and constants ϑ ∈ (0, 1), α ∈
(0, 1), and β ∈ R, with the following properties:

(a)

Qϑ,π,ρ ≥ IC · µ

for all π ∈ E and ρ ∈ F,
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(b)

pW ≤ αW + ICβ,

(c)

sup
x∈X,a∈AAA(x),b∈BBB(x)

|k(x, a, b)|
W (x)

< ∞.

Assumption 3.1 (a) means that C is a ”petite set”, (b) is called
”geometric drift towards C ” (see Meyn and Tweedie [10]). We assume
in this paper that Assumption 3.1 is satisfied.

Lemma 3.2 There are a σX-measurable function V with 1 ≤ W ≤
V ≤ W + const, and a constant λ ∈ (0, 1) with

Qϑ,π,ρV ≤ λV + IC · µV (3.1)

and

ϑpV ≤ λV. (3.2)

Proof: Without loss of generality we assume β > 0. Let β′ := ϑ
1−ϑβ,

W ′ := W + β′, and α′ := β′+α
β′+1 . Then it holds that α′ ∈ (α, 1) and

pW ′ = pW + β′

≤ αW + β′ + βIC

≤ α′W − (α′ − α)W + α′β′ + (1− α′)β′ + βIC

≤ α′W ′ − (α′ − α) + (1− α′)β′ + βIC

= α′W ′ + β′ + α− α′(β′ + 1) + βIC

= α′W ′ + βIC . (3.3)

Now let W ′′ := W ′ − β′IC = W + β′(1− IC). Then we get from (3.3 )

p(W ′′ + β′IC) = pW ′

≤ α′W ′ + βIC

= α′W ′′ + α′β′IC + βIC

= α′W ′′ + α′β′IC +
1− ϑ

ϑ
β′IC

= α′W ′′ +
α′ϑ+ 1− ϑ

ϑ
β′IC

≤ α′W ′′ +
β′

ϑ
IC . (3.4)



AVERAGE OPTIMAL STRATEGIES IN MARKOV GAMES 21

We put α′′ := 1−ϑ
1−α′ϑ . Then it holds that α′ = α′′+ϑ−1

α′′ϑ . For β′′ := α′′β′

it follows:

pW ′′ ≤ α′′ + ϑ− 1

α′′ϑ
W ′′ − β′′

α′′ pIC +
β′′

α′′ϑ
IC .

Hence,

α′′ϑpW ′′ ≤ (α′′ + ϑ− 1)W ′′ − ϑβ′′pIC + β′′IC .

Then

(1− ϑ)W ′′ ≤ α′′W ′′ + β′′IC − ϑp(α′′W ′′ + β′′IC).

This implies

(1− ϑ)W ′′ ≤ α′′W ′′ + β′′IC − ϑπρp(α′′W ′′ + β′′IC)

for every π ∈ E, ρ ∈ F. Hence,

Qϑ,π,ρW
′′ =

∞∑
n=0

(1− ϑ)ϑn(πρp)nW ′′

≤
∞∑
n=0

ϑn(πρp)n(α′′W ′′ + β′′IC)

−
∞∑
n=1

ϑn(πρp)n(α′′W ′′ + β′′IC)

= α′′W ′′ + β′′IC . (3.5)

We choose ϑ′ ∈ (ϑ, 1) and set γ := max{ β′′

µ(X) ,
β′

ϑ′−ϑ}, λ
′ := α′′+γ

1+γ , λ :=

max{λ′, ϑ′}. It follows that α′′ < λ′ ≤ λ < 1 and λ′ − α′′ = (1 − λ′)γ.
Hence,

(λ− α′′)W ′′ ≥ λ′ − α′′ ≥ (1− λ′)γ ≥ (1− λ)γ. (3.6)

We put V := W ′′ + γ. Obviously, V ≥ W ′′ ≥ 1 and V ≥ γ. Then it
follows

Qϑ,π,ρV = Qϑ,π,ρW
′′ + γ

≤ α′′W ′′ + IC · β′′ + γ

≤ α′′W ′′ + IC · γµ(X) + γ

≤ α′′W ′′ + IC · µV + γ

≤ α′′W ′′ + IC · µV + (λ− α′′)W ′′ + λγ (see (3.6 ))

= λ(W ′′ + γ) + IC · µV
= λV + IC · µV.
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Hence, (3.1 ) is proved.

From γ ≥ β′

ϑ′−ϑ it follows

ϑ′γ ≥ ϑγ + β′. (3.7)

Then

ϑpV = ϑpW ′′ + ϑγ

≤ α′ϑW ′′ + β′ + ϑγ (see (3.4 ))

≤ α′ϑW ′′ + ϑ′γ (see (3.7 ))

≤ ϑ′(W ′′ + γ)

= ϑ′V

≤ λV.

Hence, (3.2 ) is also proved. 2

4 Properties of Stationary Strategy Pairs

For a function u : X → R we put ∥u∥V := supx∈X
|u(x)|
V (x) . Furthermore,

we denote byV the set of all σX-measurable functions u with ∥u∥V < ∞.
In the following we will assume that on V that metric is given which is
induced by the weighted supremum norm ∥ · ∥V . Then V is complete.

Lemma 4.1 ∥ sup
n∈N,π∈E,ρ∈F

(πρp)nV ∥V < ∞.

Proof: From Assumption 3.1(b) it follows that

(πρp)nW ≤ αnW +
1

1− α
β.

By Lemma 3.2 we get

(πρp)nV ≤ (πρp)nW + const ≤ αnW + const′ ≤ αnV + const′.

The statement is implied by this. 2

Let Tw be the operator given by

Twu(x, a, b) := (1− ϑ)(ϑk(x, a, b) + w(x)) + ϑpu(x, a, b)

for all u ∈ V, x ∈ X, a ∈ A , b ∈ B. We note that Tw has essentially
the same structure as the cost operator T used in stochastic dynamic
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programming and stochastic game theory. This implies that some of
our proofs are very similar to known proofs. Therefore we will restrict
ourselves to a few remarks in these cases. (A very good exposition of
basic ideas and recent developments in stochastic dynamic programming
can be found in the books of Hernández- Lerma and Lasserre [1], [2].)
Obviously,

Twu = (1− ϑ)ϑT (
u

1− ϑ
) + (1− ϑ)w. (4.8)

Lemma 4.2 Let w ∈ V, π ∈ E, ρ ∈ F . Then the functional equation

u = πρTwu (4.9)

has a unique solution uw = Sπρw ∈ V and it holds:

Sπρw = lim
n→∞

(πρTw)
nu = (1− ϑ)

∞∑
n=0

ϑn(πρp)n(ϑπρk + w) (4.10)

for every u ∈ V.

Proof: We note that πρTwV ⊆ V. From (3.2 ) it follows that πρTw

is contracting on V with modulus λ. The rest of the proof follows by
Banach’s Fixed Point Theorem. 2

We define a new operator Sγ,π,ρ by

Sγ,π,ρw := −(1− IC)γ + Sπρw − ICµw (4.11)

for π ∈ E, ρ ∈ F, w ∈ V where Sπρ is the operator defined by the
functional equation (4.9 ). The following lemma gives some properties
of this operator.

Lemma 4.3 (a) Sγ,π,ρV ⊆ V.

(b) Sγ,π,ρ is isotonic.

(c) Sγ,π,ρ is contracting.

Proof: (a) is obvious.
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(b) Using (4.10 ) we get

Sγ,π,ρw = −(1− IC)γ + (1− ϑ)

∞∑
n=0

ϑn(πρp)n(ϑπρk + w)− ICµw

= −(1− IC)γ + (1− ϑ)

∞∑
n=0

ϑn+1(πρp)nπρk

+(Qϑ,π,ρ − ICµ)w. (4.12)

The statement follows from Assumption 3.1 (a).

(c) By Lemma 3.2 and (4.12 ) we get for u, v ∈ V

|Sγ,π,ρu− Sγ,π,ρv| = |(Qϑ,π,ρ − ICµ)(u− v)|
≤ (Qϑ,π,ρ − ICµ)V ∥u− v∥V
≤ λV ∥u− v∥V . 2 (4.13)

Lemma 4.4 The operator Sγ,π,ρ has in V a unique fixed point uγ,π,ρ.
µuγ,π,ρ is continuous and non-increasing in γ.

Proof: The existence and uniqueness of the fixed point follows from
Lemma 4.3 by Banach’s Fixed Point Theorem. From Sγ,π,ρv ≥ Sγ′,π,ρv
for γ ≤ γ′, and the isotonicity of Sγ,π,ρ it follows that uγ,π,ρ ≥ uγ′,π,ρ.
Hence, µuγ,π,ρ ≥ µuγ′,π,ρ. Furthermore, for arbitrary γ, γ′

|uγ,π,ρ − uγ′,π,ρ| = |(1− IC)(γ
′ − γ) + (Qϑ,π,ρ − ICµ)(uγ,π,ρ − uγ′,π,ρ)|

≤ |γ − γ′|V + λ∥uγ,π,ρ − uγ′,π,ρ∥V V

Hence,

∥uγ,π,ρ − uγ′,π,ρ∥V ≤ |γ − γ′|+ λ∥uγ,π,ρ − uγ′,π,ρ∥V

and

|µuγ,π,ρ − µuγ′,π,ρ| ≤ ∥uγ,π,ρ − uγ′,π,ρ∥V µV

≤ |γ − γ′|
1− λ

µV . 2

Theorem 4.5 There exists a constant g and v ∈ V such that

g + v = πρk + πρpv. (4.14)

It holds:

g = Φπ∞ρ∞ .
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Proof: From Lemma 4.4 it follows that there is a γ∗ with γ∗ = µuγ∗,π,ρ.
Hence,

uγ∗,π,ρ = Sγ∗,π,ρuγ∗,π,ρ

= −(1− IC)γ
∗ + Sπρuγ∗,π,ρ − ICµuγ∗,π,ρ

= Sπρuγ∗,π,ρ − γ∗. (4.15)

Let w∗ := uγ∗,π,ρ. If we put w = w∗ in (4.9 ), then we get

Sπρw
∗ = (1− ϑ)(ϑπρk + w∗) + ϑπρpSπρw

∗.

It follows by (4.15 ) that

w∗ + γ∗ = (1− ϑ)(ϑπρk + w∗) + ϑπρp(w∗ + γ∗).

Therefore,

ϑw∗ + (1− ϑ)γ∗ = (1− ϑ)ϑπρk + ϑπρpw∗.

For g = γ∗

ϑ , v = w∗

1−ϑ we get (4.14 ). From (4.14 ) it follows

Ng =

N−1∑
n=0

(πρp)nπρk + (πρp)Nv − v.

If we consider Lemma 4.1 we get

g = lim
N→∞

1

N

N−1∑
n=0

(πρp)nπρk = Φπ∞ρ∞ . 2

5 Existence of optimal stationary strategies

We give first a lemma which concerns a certain auxiliary one-stage game.
The results of this lemma are well-known and can be derived, for in-
stance, from the results in [12].

Lemma 5.1 Let u : X ×A ×B → R a σX×A×B-measurable function

with supx∈X,a∈AAA(x),b∈BBB(x)
|u(x,a,b)|
V (x) < ∞. Then it holds:

(a) infπ∈E supρ∈F πρu = supρ∈F infπ∈E πρu ∈ V.

(b) There are π∗ ∈ E, ρ∗ ∈ F with π∗ρu ≤ π∗ρ∗u ≤ πρ∗u for all
π ∈ E, ρ ∈ F.
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For a function v : X×A → R (v : X×B → R) we put Lv := infπ∈E πv
(Uv := supρ∈F ρv). We can now prove the following lemma concerning
an auxiliary functional equation.

Lemma 5.2 The functional equation

u = inf
π∈E

sup
ρ∈F

{(1− ϑ)(ϑπρk + w) + ϑπρpu}

= LUTwu

= (1− ϑ)ϑLUT (
u

1− ϑ
) + (1− ϑ)w (5.16)

has for every w ∈ V a unique solution u∗ =: Sw in V.

Proof: Let w ∈ V. Then it follows from Lemma 5.1 that LUTwV ⊆ V.
Because πρTw is contracting on V, it holds for u, v ∈ V:

πρTwu ≤ πρTwv + λ∥u− v∥V V.

Since L and U are isotonic it follows:

LUTwu ≤ LUTwv + λ∥u− v∥V V.

Because u and v can be interchanged, we get that LUTw is also
contracting. The statement follows by Banach’s Fixed Point Theorem.
2

In the following lemma Sπρ and S are the operators defined by the
functional equations (4.9 ) and (5.16 ).

Lemma 5.3 For every w ∈ V there are π∗ ∈ E, ρ∗ ∈ F with

Sπ∗,ρw ≤ Sw ≤ Sπ,ρ∗w (5.17)

for all π ∈ E, ρ ∈ F . Furthermore,

Sw := inf
π∈E

sup
ρ∈F

Sπρw. (5.18)

Proof: It follows from Lemma 5.1 that there are π∗ ∈ E, ρ∗ ∈ F such
that

π∗ρT (
uw

1− ϑ
) ≤ LUT (

uw
1− ϑ

)

≤ πρ∗T (
uw

1− ϑ
) (5.19)
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where uw = Sw. Hence,

π∗ρTwuw ≤ LUTwuw = uw ≤ πρ∗Twuw (5.20)

for all π ∈ E, ρ ∈ F. Assume that

(π∗ρTw)
nuw ≤ uw ≤ (πρ∗Tw)

nuw (5.21)

for n ∈ N. Then it follows from (5.20 ) that

uw ≤ πρ∗Tw((πρ
∗Tw)

nuw = (πρ∗Tw)
n+1uw. (5.22)

Analogously,

uw ≥ (π∗ρTw)
n+1uw. (5.23)

From (5.22 ) and (5.23 ) it follows by mathematical induction that
(5.21 ) holds for all n ∈ N. For n → ∞ we get (5.17 ).
(5.18 ) follows immediately from (5.17 ). 2

We define a new operator Sγ by

Sγw := −(1− IC)γ + Sw − ICµw

for π ∈ E, ρ ∈ F, w ∈ V, γ ∈ R. The following lemma gives some
properties of this operator.

Lemma 5.4 (a) SγV ⊆ V.

(b) Sγ is isotonic.

(c) Sγ is contracting with modulus λ.

(d) Sγ has in V a unique fixed point vγ . It holds limn→∞(Sγ)
nu = vγ

for every u ∈ V. Moreover, vγ is isotonic and continuous in γ.

Proof: (a) is obvious.

(b) From (4.11 ) and (5.18 ) it follows that

Sγw = inf
π∈E

sup
ρ∈F

Sγ,π,ρw.

By Lemma 4.3 we get the statement.
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(c) Let w′, w′′ ∈ V. By Lemma 5.3 it follows that there are π′′ ∈ E,
ρ′ ∈ F, such that

Sw′ ≤ Sπ,ρ′w
′

Sw′′ ≥ Sπ′′,ρw
′′

for all π ∈ E, ρ ∈ F. Hence,

Sγw
′ − Sγw

′′ = −(1− IC)γ + Sw′ − ICµw
′

−(−(1− IC)γ + Sw′′ − ICµw
′′)

≤ −(1− IC)γ + Sπ′′,ρ′w
′ − ICµw

′

−(−(1− IC)γ + Sπ′′,ρ′w
′′ − ICµw

′′)

= Sγ,π′′,ρ′w
′ − Sγ,π′′,ρ′w

′′

≤ λV ∥w′ − w′′∥V

since Sγ,π′′,ρ′ is contracting (see Lemma 4.3). Because w′ and w′′ can
be interchanged, we get the statement.

(d) The existence of a unique fixed point vγ ∈ V and
limn→∞(Sγ)

nu = vγ for every u ∈ V follows from Banach’s Fixed Point
Theorem. For γ′ ≤ γ it holds

Sγw ≤ Sγ′w = Sγw + (1− IC)(γ − γ′) ≤ Sγw + (γ − γ′)V.

Assume that for n > 1

Sn−1
γ vγ′ ≤ vγ′ ≤ Sn−1

γ vγ′ +
γ − γ′

1− λ
V.

Then it follows

Sn
γ vγ′ ≤ Sγ′Sn−1

γ vγ′ ≤ Sγ′vγ′ = vγ′ ≤ Sγ′(Sn−1
γ vγ′ +

γ − γ′

1− λ
V )

≤ Sγ(S
n−1
γ vγ′ +

γ − γ′

1− λ
V ) + (γ − γ′)V

≤ Sn
γ vγ′ +

λ(γ − γ′)

1− λ
V + (γ − γ′)V (see (c))
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= Sn
γ vγ′ +

γ − γ′

1− λ
V.

Hence, by mathematical induction we find that this inequality holds for
all n ∈ N. For n → ∞ it follows

vγ ≤ vγ′ ≤ vγ +
γ − γ′

1− λ
V.

The rest of the statement is implied by this. 2

Theorem 5.5 There are g = const and v ∈ V with

g + v = LUTv. (5.24)

It holds

g = inf
Π∈E∞

sup
P∈F∞

ΦΠP .

Furthermore, there is an optimal stationary strategy pair.

Proof: From Lemma 5.4 it follows that µvγ is non-increasing in γ.
Therefore, there is a γ∗ with γ∗ = µvγ∗ .

vγ∗ = Sγ∗vγ∗

= −(1− IC)γ
∗ + Svγ∗ − ICµvγ∗

= Svγ∗ − γ∗. (5.25)

Let w∗ := vγ∗ . If we put w = w∗ in (5.16 ) then we get

Sw∗ = LU((1− ϑ)(ϑk + w∗) + ϑpSw∗).

It follows by (5.25 )

w∗ + γ∗ = LU((1− ϑ)(ϑk + w∗) + ϑp(w∗ + γ∗)).

Therefore,

ϑw∗ + (1− ϑ)γ∗ = LU((1− ϑ)ϑk + ϑpw∗).

For g = γ∗

ϑ , v = w∗

1−ϑ we get (5.24 ).
From (5.24 ) and Lemma 5.1 it follows that there are π∗ ∈ E, ρ∗ ∈ F,

with

π∗ρnTvγ∗ − g ≤ vγ∗ ≤ πnρ
∗Tvγ∗ + ε− g
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for all Π = (πn) ∈ E∞, P = (ρn) ∈ F∞. It follows

π∗ρ0Tπ
∗ρ1T · · ·π∗ρNTvγ∗ − (N + 1)g

≤ vγ∗ ≤ π0ρ
∗Tπ1ρ

∗T · · ·πNρ∗Tvγ∗ − (N + 1)g

For N → ∞ we get

ΦΠρ∗∞ ≤ g ≤ Φπ∗∞P

for all Π ∈ E∞, P ∈ F∞. This implies

g = inf
Π∈E∞

sup
P∈F∞

ΦΠP

and the optimality of (π∗∞, ρ∗∞). 2
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