Morfismos, Vol. 4, No. 2, 2000, pp. 15–31

Average optimal strategies in Markov games under a geometric drift condition *

Heinz-Uwe Küenle

Abstract

Zero-sum stochastic games with the expected average cost criterion and unbounded stage cost are studied. The state space is an arbitrary Borel set in a complete separable metric space but the action sets are finite. It is assumed that the transition probabilities of the Markov chains induced by stationary strategies satisfy a certain geometric drift condition. It is shown that the average optimality equation has a solution and that both players have optimal stationary strategies.

1991 Mathematics Subject Classification: 91A15 Keywords and phrases: Markov games, Borel state space, average cost criterion, geometric drift condition, unbounded costs

1 Introduction

In this paper two-person stochastic games with the expected average cost criterion are studied. The state space is a standard Borel space, that is, an arbitrary Borel set in a complete separable metric space. The action sets of both players are finite. Such a stochastic game can be described in the following way: The state x_n of a dynamic system is periodically observed at times $n = 1, 2, \ldots$ After an observation at time *n* the first player chooses an action a_n from the action set $A(x_n)$ and afterwards the second player chooses an action b_n from the action set $B(x_n)$ dependent on the complete history of the system at this time. The first player must pay cost $k^1(x_n, a_n, b_n)$, the second player must pay

^{*}Invited article

 $k^2(x_n, a_n, b_n)$, and the system moves to a new state x_{n+1} in the state space **X** according to the transition probability $p(\cdot \mid x_n, a_n, b_n)$.

Stochastic games with Borel state space and average cost criterion are considered by several authors. Related results are given by Maitra and Sudderth [7], [8], [9], Nowak [13], Rieder [15] and Küenle [6] in the case of bounded costs (payoffs). The case of unbounded payoffs is treated by Nowak [14] and Küenle [4]. The assumptions in this paper concerning the transition probabilities are related to Nowak's assumptions: Nowak assumes that there is a Borel set $C \in \mathbf{X}$ and for every stationary strategy pair $(\pi^{\infty}, \rho^{\infty})$ a measure μ such that C is μ -small with respect to the Markov chain induced by this strategy pair. We assume that C is only a μ -petite set with respect to a resolvent of this Markov chain; as against this, we demand that μ is independent of the corresponding strategy pair. (For the definition of "small sets" and "petite sets" see [10].)

The paper is organised as follows: In Section 2 the mathematical model of Markov games is presented. Section 3 contains the assumptions on the transition probabilities and on the stage costs, and also some preliminary results. In Section 4 we study the expected average cost of a fixed stationary strategy pair. We show that the Poisson equation has a solution. In Section 5 we prove that the average cost optimality equation has a solution and both players have optimal stationary strategies.

2 The Mathematical Model

In this section we introduce the mathematical model of the stochastic game considered in this paper.

Definition 2.1

 $\mathcal{M} = ((\mathbf{X}, \sigma_{\mathbf{X}}), (\mathbf{A}, \sigma_{\mathbf{A}}), \mathbf{A}, (\mathbf{B}, \sigma_{\mathbf{B}}), \mathbf{B}, p, k^1, k^2, \mathbf{E}, \mathbf{F})$ is called a *Markov* game if the elements of this tuple have the following meaning:

- $(\mathbf{X}, \sigma_{\mathbf{X}})$ is a standard Borel space, called the *state space*.
- A is a countable set and $\sigma_{\mathbf{A}}$ is the power set of A. $A(x) \in \mathbf{A}$ denotes a finite set of actions of the first player for every $x \in \mathbf{X}$. A is called the *action space of the first player* and A(x) is called the *admissible action set of the first player at state* $x \in \mathbf{X}$.

- **B** is a countable set and $\sigma_{\mathbf{B}}$ is the power set of **B**. $B(x) \in \mathbf{B}$ denotes a finite set of actions of the second player for every $x \in \mathbf{X}$. **B** is called the *action space of the second player* and B(x) is called the *admissible action set of the second player at state* $x \in \mathbf{X}$.
- p is a transition probability from $\sigma_{\mathbf{X}\times\mathbf{A}\times\mathbf{B}}$ to $\sigma_{\mathbf{X}}$, the transition law.
- k^i , i = 1, 2, are $\sigma_{\mathbf{X} \times \mathbf{A} \times \mathbf{B}}$ -measurable functions, called *stage cost functions*.
- Let $\mathbf{H}_n = (\mathbf{X} \times \mathbf{A} \times \mathbf{B})^n \times \mathbf{X}$ for $n \ge 1$, $\mathbf{H}_0 = \mathbf{X}$. $h \in \mathbf{H}_n$ is called the history at time n. A transition probability π_n from $\sigma_{\mathbf{H}_n}$ to $\sigma_{\mathbf{A}}$ with $\pi_n(\mathbf{A}(x_n) \mid x_0, a_0, b_0, \dots, x_n) = 1$ for all $(x_0, a_0, b_0, \dots, x_n) \in \mathbf{H}_n$ is called a decision rule of the first player at time n. A transition probability ρ_n from $\sigma_{\mathbf{H}_n \times \mathbf{A}}$ to $\sigma_{\mathbf{B}}$ with $\rho_n(\mathbf{B}(x_n) \mid x_0, a_0, b_0, \dots, x_n) = 1$ for all $(x_0, a_0, b_0, \dots, x_n) \in \mathbf{H}_n$ is called a decision rule of the second player at time n. A decision rule of the first [second] player is called Markov iff a transition probability $\tilde{\pi}_n$ from $\sigma_{\mathbf{H}_n}$ to $\sigma_{\mathbf{A}}$ [$\tilde{\rho}_n$ from $\sigma_{\mathbf{H}_n}$ to $\sigma_{\mathbf{B}}$] exists such that $\pi_n(\cdot \mid x_0, a_0, b_0, \dots, x_n) = \tilde{\pi}_n(\cdot \mid x_n)$ [$\rho_n(\cdot \mid x_0, a_0, b_0, \dots, x_n) = \tilde{\rho}_n(\cdot \mid x_n)$] for all $(x_0, a_0, b_0, \dots, x_n) \in$ $\mathbf{H}_n \times \mathbf{A}$. (Notation: We identify π_n as $\tilde{\pi}_n$ and ρ_n as $\tilde{\rho}_n$.) **E** and **F** denote non-empty sets of Markov decision rules.

A decision rule of the first [second] player is called *determin*istic if a function $e_n : \mathbf{H}_n \to \mathbf{A}$ $[f_n : \mathbf{H}_n \to \mathbf{B}]$ exists such that $\pi_n(e_n(h_n) \mid h_n) = 1$ for all $h_n \in \mathbf{H}_n$ $[\rho_n(f_n(h_n) \mid h_n) = 1$ for all $(h_n) \in \mathbf{H}_n$].

A sequence $\Pi = (\pi_n)$ or $P = (\rho_n)$ of decision rules of the first or second player is called a *strategy* of that player.

Strategies are called *deterministic*, or *Markov* iff all their decision rules have the corresponding property.

A Markov strategy $\Pi = (\pi_n)$ or $P = (\rho_n)$ is called *stationary* iff $\pi_0 = \pi_1 = \pi_2 = \dots$ or $\rho_0 = \rho_1 = \rho_2 = \dots$ (Notation: $\Pi = \pi^{\infty}$ or $P = \rho^{\infty}$.) We assume in this paper that the sets of all admissible strategies are \mathbf{E}^{∞} and \mathbf{F}^{∞} . Hence, only Markov strategies are allowed. But by means of dynamic programming methods it is also possible to get corresponding results for Markov games with larger sets of admissible strategies. If \mathbf{E} and \mathbf{F} are the sets of all Markov decision rules

HEINZ-UWE KÜENLE

(in the above sense) then we have a Markov game with perfect (or complete) information. In this case the action set of the second player may depend also on the present action of the first player. If **E** is the set of all Markov decision rules but **F** is the set of all Markov decision rules which do not depend on the present action of the first player then we have a usual Markov game with independent action choice. Let $\Omega := \mathbf{X} \times \mathbf{A} \times \mathbf{B} \times \mathbf{X} \times \mathbf{A} \times \mathbf{B} \times \ldots$ and $K^{i,N}(\omega) := \sum_{j=0}^{N} k^i(x_j, a_j, b_j)$ for $\omega = (x_0, a_0, b_0, x_1, \ldots) \in \Omega$, $i = 1, 2, N \in \mathbb{N}$. By means of the Ionescu-Tulcea Theorem (see, for instance, [11]), it follows that there exists a suitable σ -algebra \mathcal{F} in Ω and for every initial state $x \in \mathbf{X}$ and strategy pair (Π, P), $\Pi = (\pi_n), P = (\rho_n)$, a unique probability measure $\mathsf{P}_{x,\Pi,P}$ on \mathcal{F} according to the transition probabilities π_n , ρ_n and p. Furthermore, $K^{i,N}$ is \mathcal{F} -measurable for all $i = 1, 2, N \in \mathbb{N}$. We set

$$V_{\Pi P}^{i,N}(x) = \int_{\Omega} K^{i,N}(\omega) \mathsf{P}_{x,\Pi,P}(d\omega)$$
(2.1)

and

$$\Phi^{i}_{\Pi P}(x) = \liminf_{N \to \infty} \frac{1}{N+1} V^{i,N}_{\Pi P}(x)$$
(2.2)

if the corresponding integrals exist.

Definition 2.2

A strategy pair (Π^*, P^*) is called a Nash equilibrium pair iff

$$\Phi^1_{\Pi^*P^*} \le \Phi^1_{\Pi P^*}$$
$$\Phi^2_{\Pi^*P^*} \le \Phi^2_{\Pi^*P}$$

for all strategy pairs (Π, P) .

In this paper we will consider especially zero-sum Markov games, that means $k^1 = -k^2$. In this case we call a Nash equilibrium pair also an *optimal strategy pair*. We set $k := k^1$, $V_{\Pi P}^N := V_{\Pi P}^{1,N}$, $\Phi_{\Pi P} := \Phi_{\Pi P}^1$.

3 Assumptions and Preliminary Results

In this paper we use the same notation for a substochastic kernel and for the "expectation operator" with respect to this kernel, that means: If $(\mathbf{Y}, \sigma_{\mathbf{Y}})$ and $(\mathbf{Z}, \sigma_{\mathbf{Z}})$ are standard Borel spaces, $v : \mathbf{Y} \times \mathbf{Z} \to \mathbb{R}$ a $\sigma_{\mathbf{Y}\times\mathbf{Z}}$ -measurable function, and q a substochastic kernel from $(\mathbf{Y}, \sigma_{\mathbf{Y}})$ to $(\mathbf{Z}, \sigma_{\mathbf{Z}})$ then we put

$$qv(y) := \int_{\mathbf{Z}} q(dz \mid y)v(y, z) \text{ for all } y \in \mathbf{Y}$$

if this integral is well-defined.

Furthermore, we define the operator T by

$$Tu = k + pu$$

for all $\sigma_{\mathbf{X}}$ -measurable $u: \mathbf{X} \to \mathbb{R}$ for which pu exists, that means,

$$Tu(x, a, b) = k(x, a, b) + \int_{\mathbf{X}} p(d\xi \mid x, a, b)u(\xi)$$

for all $x \in \mathbf{X}, a \in \mathbf{A}, b \in \mathbf{B}$.

Let $\Pi = (\pi_n) \in \mathbf{E}^{\infty}$, $P = (\rho_n) \in \mathbf{F}^{\infty}$. If $V_{\Pi P}^N$ exists, then we get

$$V_{\Pi P}^{N} = \pi_{0} \rho_{0} k + \sum_{j=1}^{N} \pi_{0} \rho_{0} p \cdots p \pi_{j} \rho_{j} k.$$

For $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$ we put $(\pi \rho p)^n := \pi \rho p (\pi \rho p)^{n-1}$ where $(\pi \rho p)^0$ denotes the identity. Let $\vartheta \in (0, 1)$. We set for every $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$, $x \in \mathbf{X}$, and $Y \in \sigma_{\mathbf{X}}$

$$Q_{\vartheta,\pi,\rho}(Y \mid x) := (1 - \vartheta) \sum_{n=0}^{\infty} \vartheta^n (\pi \rho p)^n \mathbf{I}_Y(x)$$

where \mathbf{I}_Y is the characteristic function of the set Y.

We remark that for a stationary strategy pair $(\pi^{\infty}, \rho^{\infty})$ the transition probability $Q_{\vartheta,\pi,\rho}$ is a resolvent of the corresponding Markov chain.

Assumption 3.1 There are: a nontrivial measure μ on $\sigma_{\mathbf{X}}$; a set $C \in \sigma_{\mathbf{X}}$; a $\sigma_{\mathbf{X}}$ -measurable function $W \geq 1$; and constants $\vartheta \in (0, 1)$, $\alpha \in (0, 1)$, and $\beta \in \mathbb{R}$, with the following properties:

(a)

$$Q_{\vartheta,\pi,\rho} \geq \mathbf{I}_C \cdot \mu$$

for all $\pi \in \mathbf{E}$ and $\rho \in \mathbf{F}$,

(b)

$$pW \le \alpha W + \mathbf{I}_C \beta,$$

(c)

$$\sup_{x \in \mathbf{X}, a \in \mathbf{A}(x), b \in \mathbf{B}(x)} \frac{|k(x, a, b)|}{W(x)} < \infty.$$

Assumption 3.1 (a) means that C is a "petite set", (b) is called "geometric drift towards C" (see Meyn and Tweedie [10]). We assume in this paper that Assumption 3.1 is satisfied.

Lemma 3.2 There are a $\sigma_{\mathbf{X}}$ -measurable function V with $1 \leq W \leq V \leq W + const$, and a constant $\lambda \in (0, 1)$ with

$$Q_{\vartheta,\pi,\rho}V \le \lambda V + \mathbf{I}_C \cdot \mu V \tag{3.1}$$

and

$$\vartheta pV \le \lambda V. \tag{3.2}$$

Proof: Without loss of generality we assume $\beta > 0$. Let $\beta' := \frac{\vartheta}{1-\vartheta}\beta$, $W' := W + \beta'$, and $\alpha' := \frac{\beta' + \alpha}{\beta' + 1}$. Then it holds that $\alpha' \in (\alpha, 1)$ and

$$pW' = pW + \beta'$$

$$\leq \alpha W + \beta' + \beta \mathbf{I}_{C}$$

$$\leq \alpha' W - (\alpha' - \alpha)W + \alpha'\beta' + (1 - \alpha')\beta' + \beta \mathbf{I}_{C}$$

$$\leq \alpha' W' - (\alpha' - \alpha) + (1 - \alpha')\beta' + \beta \mathbf{I}_{C}$$

$$= \alpha' W' + \beta' + \alpha - \alpha'(\beta' + 1) + \beta \mathbf{I}_{C}$$

$$= \alpha' W' + \beta \mathbf{I}_{C}.$$
(3.3)

Now let $W'' := W' - \beta' \mathbf{I}_C = W + \beta' (1 - \mathbf{I}_C)$. Then we get from (3.3)

$$p(W'' + \beta' \mathbf{I}_{C}) = pW'$$

$$\leq \alpha' W' + \beta \mathbf{I}_{C}$$

$$= \alpha' W'' + \alpha' \beta' \mathbf{I}_{C} + \beta \mathbf{I}_{C}$$

$$= \alpha' W'' + \alpha' \beta' \mathbf{I}_{C} + \frac{1 - \vartheta}{\vartheta} \beta' \mathbf{I}_{C}$$

$$= \alpha' W'' + \frac{\alpha' \vartheta + 1 - \vartheta}{\vartheta} \beta' \mathbf{I}_{C}$$

$$\leq \alpha' W'' + \frac{\beta'}{\vartheta} \mathbf{I}_{C}.$$
(3.4)

We put $\alpha'' := \frac{1-\vartheta}{1-\alpha'\vartheta}$. Then it holds that $\alpha' = \frac{\alpha''+\vartheta-1}{\alpha''\vartheta}$. For $\beta'' := \alpha''\beta'$ it follows:

$$pW'' \leq \frac{\alpha'' + \vartheta - 1}{\alpha''\vartheta} W'' - \frac{\beta''}{\alpha''} p \mathbf{I}_C + \frac{\beta''}{\alpha''\vartheta} \mathbf{I}_C.$$

Hence,

$$\alpha''\vartheta pW'' \le (\alpha'' + \vartheta - 1)W'' - \vartheta\beta'' p\mathbf{I}_C + \beta''\mathbf{I}_C.$$

Then

$$(1-\vartheta)W'' \le \alpha''W'' + \beta''\mathbf{I}_C - \vartheta p(\alpha''W'' + \beta''\mathbf{I}_C).$$

This implies

$$(1-\vartheta)W'' \le \alpha''W'' + \beta''\mathbf{I}_C - \vartheta\pi\rho p(\alpha''W'' + \beta''\mathbf{I}_C)$$

for every $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$. Hence,

$$Q_{\vartheta,\pi,\rho}W'' = \sum_{n=0}^{\infty} (1-\vartheta)\vartheta^n (\pi\rho p)^n W''$$

$$\leq \sum_{n=0}^{\infty} \vartheta^n (\pi\rho p)^n (\alpha''W'' + \beta''\mathbf{I}_C)$$

$$-\sum_{n=1}^{\infty} \vartheta^n (\pi\rho p)^n (\alpha''W'' + \beta''\mathbf{I}_C)$$

$$= \alpha''W'' + \beta''\mathbf{I}_C. \qquad (3.5)$$

We choose $\vartheta' \in (\vartheta, 1)$ and set $\gamma := \max\{\frac{\beta''}{\mu(\mathbf{X})}, \frac{\beta'}{\vartheta'-\vartheta}\}, \lambda' := \frac{\alpha''+\gamma}{1+\gamma}, \lambda := \max\{\lambda', \vartheta'\}$. It follows that $\alpha'' < \lambda' \leq \lambda < 1$ and $\lambda' - \alpha'' = (1 - \lambda')\gamma$. Hence,

$$(\lambda - \alpha'')W'' \ge \lambda' - \alpha'' \ge (1 - \lambda')\gamma \ge (1 - \lambda)\gamma.$$
(3.6)

We put $V := W'' + \gamma$. Obviously, $V \ge W'' \ge 1$ and $V \ge \gamma$. Then it follows

$$Q_{\vartheta,\pi,\rho}V = Q_{\vartheta,\pi,\rho}W'' + \gamma$$

$$\leq \alpha''W'' + \mathbf{I}_{C} \cdot \beta'' + \gamma$$

$$\leq \alpha''W'' + \mathbf{I}_{C} \cdot \gamma\mu(\mathbf{X}) + \gamma$$

$$\leq \alpha''W'' + \mathbf{I}_{C} \cdot \mu V + \gamma$$

$$\leq \alpha''W'' + \mathbf{I}_{C} \cdot \mu V + (\lambda - \alpha'')W'' + \lambda\gamma \text{ (see (3.6))}$$

$$= \lambda(W'' + \gamma) + \mathbf{I}_{C} \cdot \mu V$$

$$= \lambda V + \mathbf{I}_{C} \cdot \mu V.$$

Hence, (3.1) is proved. From $\gamma \geq \frac{\beta'}{\vartheta' - \vartheta}$ it follows

$$\vartheta' \gamma \ge \vartheta \gamma + \beta'. \tag{3.7}$$

Then

$$\begin{split} \vartheta pV &= \vartheta pW'' + \vartheta \gamma \\ &\leq \alpha' \vartheta W'' + \beta' + \vartheta \gamma \; (\text{see } (3.4 \;)) \\ &\leq \alpha' \vartheta W'' + \vartheta' \gamma \; (\text{see } (3.7 \;)) \\ &\leq \vartheta' (W'' + \gamma) \\ &= \vartheta' V \\ &\leq \lambda V. \end{split}$$

Hence, (3.2) is also proved. \Box

4 Properties of Stationary Strategy Pairs

For a function $u : \mathbf{X} \to \mathbb{R}$ we put $||u||_V := \sup_{x \in \mathbf{X}} \frac{|u(x)|}{V(x)}$. Furthermore, we denote by \mathfrak{V} the set of all $\sigma_{\mathbf{X}}$ -measurable functions u with $||u||_V < \infty$. In the following we will assume that on \mathfrak{V} that metric is given which is induced by the weighted supremum norm $||\cdot||_V$. Then \mathfrak{V} is complete.

Lemma 4.1 $\| \sup_{n \in \mathbb{N}, \pi \in \mathbf{E}, \rho \in \mathbf{F}} (\pi \rho p)^n V \|_V < \infty.$

Proof: From Assumption 3.1(b) it follows that

$$(\pi \rho p)^n W \le \alpha^n W + \frac{1}{1-\alpha}\beta.$$

By Lemma 3.2 we get

 $(\pi \rho p)^n V \le (\pi \rho p)^n W + const \le \alpha^n W + const' \le \alpha^n V + const'.$

The statement is implied by this. \Box

Let T_w be the operator given by

$$T_w u(x, a, b) := (1 - \vartheta)(\vartheta k(x, a, b) + w(x)) + \vartheta p u(x, a, b)$$

for all $u \in \mathfrak{V}$, $x \in \mathbf{X}$, $a \in \mathbf{A}$, $b \in \mathbf{B}$. We note that T_w has essentially the same structure as the cost operator T used in stochastic dynamic programming and stochastic game theory. This implies that some of our proofs are very similar to known proofs. Therefore we will restrict ourselves to a few remarks in these cases. (A very good exposition of basic ideas and recent developments in stochastic dynamic programming can be found in the books of Hernández- Lerma and Lasserre [1], [2].) Obviously,

$$T_w u = (1 - \vartheta)\vartheta T(\frac{u}{1 - \vartheta}) + (1 - \vartheta)w.$$
(4.8)

Lemma 4.2 Let $w \in \mathfrak{V}, \pi \in \mathbf{E}, \rho \in \mathbf{F}$. Then the functional equation

$$u = \pi \rho T_w u \tag{4.9}$$

has a unique solution $u_w = S_{\pi\rho} w \in \mathfrak{V}$ and it holds:

$$S_{\pi\rho}w = \lim_{n \to \infty} (\pi\rho T_w)^n u = (1 - \vartheta) \sum_{n=0}^{\infty} \vartheta^n (\pi\rho p)^n (\vartheta \pi\rho k + w) \qquad (4.10)$$

for every $u \in \mathfrak{V}$.

Proof: We note that $\pi \rho T_w \mathfrak{V} \subseteq \mathfrak{V}$. From (3.2) it follows that $\pi \rho T_w$ is contracting on \mathfrak{V} with modulus λ . The rest of the proof follows by Banach's Fixed Point Theorem. \Box

We define a new operator $S_{\gamma,\pi,\rho}$ by

$$S_{\gamma,\pi,\rho}w := -(1 - \mathbf{I}_C)\gamma + S_{\pi\rho}w - \mathbf{I}_C\mu w \tag{4.11}$$

for $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$, $w \in \mathfrak{V}$ where $S_{\pi\rho}$ is the operator defined by the functional equation (4.9). The following lemma gives some properties of this operator.

Lemma 4.3 (a) $S_{\gamma,\pi,\rho}\mathfrak{V}\subseteq\mathfrak{V}$.

- (b) $S_{\gamma,\pi,\rho}$ is isotonic.
- (c) $S_{\gamma,\pi,\rho}$ is contracting.

Proof: (a) is obvious.

(b) Using (4.10) we get

$$S_{\gamma,\pi,\rho}w = -(1 - \mathbf{I}_C)\gamma + (1 - \vartheta)\sum_{n=0}^{\infty} \vartheta^n (\pi\rho p)^n (\vartheta\pi\rho k + w) - \mathbf{I}_C \mu w$$
$$= -(1 - \mathbf{I}_C)\gamma + (1 - \vartheta)\sum_{n=0}^{\infty} \vartheta^{n+1} (\pi\rho p)^n \pi\rho k$$
$$+ (Q_{\vartheta,\pi,\rho} - \mathbf{I}_C \mu)w.$$
(4.12)

The statement follows from Assumption 3.1 (a).

(c) By Lemma 3.2 and (4.12) we get for $u, v \in \mathfrak{V}$

$$|S_{\gamma,\pi,\rho}u - S_{\gamma,\pi,\rho}v| = |(Q_{\vartheta,\pi,\rho} - \mathbf{I}_C\mu)(u - v)|$$

$$\leq (Q_{\vartheta,\pi,\rho} - \mathbf{I}_C\mu)V||u - v||_V$$

$$\leq \lambda V||u - v||_V. \Box$$
(4.13)

Lemma 4.4 The operator $S_{\gamma,\pi,\rho}$ has in \mathfrak{V} a unique fixed point $u_{\gamma,\pi,\rho}$. $\mu u_{\gamma,\pi,\rho}$ is continuous and non-increasing in γ .

Proof: The existence and uniqueness of the fixed point follows from Lemma 4.3 by Banach's Fixed Point Theorem. From $S_{\gamma,\pi,\rho}v \ge S_{\gamma',\pi,\rho}v$ for $\gamma \le \gamma'$, and the isotonicity of $S_{\gamma,\pi,\rho}$ it follows that $u_{\gamma,\pi,\rho} \ge u_{\gamma',\pi,\rho}$. Hence, $\mu u_{\gamma,\pi,\rho} \ge \mu u_{\gamma',\pi,\rho}$. Furthermore, for arbitrary γ, γ'

$$\begin{aligned} |u_{\gamma,\pi,\rho} - u_{\gamma',\pi,\rho}| &= |(1 - \mathbf{I}_C)(\gamma' - \gamma) + (Q_{\vartheta,\pi,\rho} - \mathbf{I}_C \mu)(u_{\gamma,\pi,\rho} - u_{\gamma',\pi,\rho})| \\ &\leq |\gamma - \gamma'|V + \lambda \|u_{\gamma,\pi,\rho} - u_{\gamma',\pi,\rho}\|_V V \end{aligned}$$

Hence,

$$\|u_{\gamma,\pi,\rho} - u_{\gamma',\pi,\rho}\|_{V} \le |\gamma - \gamma'| + \lambda \|u_{\gamma,\pi,\rho} - u_{\gamma',\pi,\rho}\|_{V}$$

and

$$\begin{aligned} |\mu u_{\gamma,\pi,\rho} - \mu u_{\gamma',\pi,\rho}| &\leq & \|u_{\gamma,\pi,\rho} - u_{\gamma',\pi,\rho}\|_V \mu V \\ &\leq & \frac{|\gamma - \gamma'|}{1 - \lambda} \mu V. \quad \Box \end{aligned}$$

Theorem 4.5 There exists a constant g and $v \in \mathfrak{V}$ such that

$$g + v = \pi \rho k + \pi \rho p v. \tag{4.14}$$

It holds:

$$g = \Phi_{\pi^{\infty} \rho^{\infty}}$$

Proof: From Lemma 4.4 it follows that there is a γ^* with $\gamma^* = \mu u_{\gamma^*,\pi,\rho}$. Hence,

$$u_{\gamma^*,\pi,\rho} = S_{\gamma^*,\pi,\rho} u_{\gamma^*,\pi,\rho}$$

= $-(1 - \mathbf{I}_C)\gamma^* + S_{\pi\rho}u_{\gamma^*,\pi,\rho} - \mathbf{I}_C \mu u_{\gamma^*,\pi,\rho}$
= $S_{\pi\rho}u_{\gamma^*,\pi,\rho} - \gamma^*.$ (4.15)

Let $w^* := u_{\gamma^*, \pi, \rho}$. If we put $w = w^*$ in (4.9), then we get

$$S_{\pi\rho}w^* = (1-\vartheta)(\vartheta\pi\rho k + w^*) + \vartheta\pi\rho p S_{\pi\rho}w^*.$$

It follows by (4.15) that

$$w^* + \gamma^* = (1 - \vartheta)(\vartheta \pi \rho k + w^*) + \vartheta \pi \rho p(w^* + \gamma^*).$$

Therefore,

$$\vartheta w^* + (1 - \vartheta)\gamma^* = (1 - \vartheta)\vartheta\pi\rho k + \vartheta\pi\rho pw^*.$$

For $g = \frac{\gamma^*}{\vartheta}$, $v = \frac{w^*}{1-\vartheta}$ we get (4.14). From (4.14) it follows

$$Ng = \sum_{n=0}^{N-1} (\pi \rho p)^n \pi \rho k + (\pi \rho p)^N v - v.$$

If we consider Lemma 4.1 we get

$$g = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (\pi \rho p)^n \pi \rho k = \Phi_{\pi^{\infty} \rho^{\infty}}. \quad \Box$$

5 Existence of optimal stationary strategies

We give first a lemma which concerns a certain auxiliary one-stage game. The results of this lemma are well-known and can be derived, for instance, from the results in [12].

Lemma 5.1 Let $u : \mathbf{X} \times \mathbf{A} \times \mathbf{B} \to \mathbb{R}$ a $\sigma_{\mathbf{X} \times \mathbf{A} \times \mathbf{B}}$ -measurable function with $\sup_{x \in \mathbf{X}, a \in \mathbf{A}(x), b \in \mathbf{B}(x)} \frac{|u(x, a, b)|}{V(x)} < \infty$. Then it holds:

- (a) $\inf_{\pi \in \mathbf{E}} \sup_{\rho \in \mathbf{F}} \pi \rho u = \sup_{\rho \in \mathbf{F}} \inf_{\pi \in \mathbf{E}} \pi \rho u \in \mathfrak{V}.$
- (b) There are $\pi^* \in \mathbf{E}$, $\rho^* \in \mathbf{F}$ with $\pi^* \rho u \leq \pi^* \rho^* u \leq \pi \rho^* u$ for all $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$.

For a function $v : \mathbf{X} \times \mathbf{A} \to \mathbb{R}$ $(v : \mathbf{X} \times \mathbf{B} \to \mathbb{R})$ we put $Lv := \inf_{\pi \in \mathbf{E}} \pi v$ $(Uv := \sup_{\rho \in \mathbf{F}} \rho v)$. We can now prove the following lemma concerning an auxiliary functional equation.

Lemma 5.2 The functional equation

$$u = \inf_{\pi \in \mathbf{E}} \sup_{\rho \in \mathbf{F}} \{ (1 - \vartheta)(\vartheta \pi \rho k + w) + \vartheta \pi \rho p u \}$$

= $LUT_w u$
= $(1 - \vartheta)\vartheta LUT(\frac{u}{1 - \vartheta}) + (1 - \vartheta)w$ (5.16)

has for every $w \in \mathfrak{V}$ a unique solution $u^* =: Sw$ in \mathfrak{V} .

Proof: Let $w \in \mathfrak{V}$. Then it follows from Lemma 5.1 that $LUT_w \mathfrak{V} \subseteq \mathfrak{V}$. Because $\pi \rho T_w$ is contracting on \mathfrak{V} , it holds for $u, v \in \mathfrak{V}$:

$$\pi \rho T_w u \le \pi \rho T_w v + \lambda \| u - v \|_V V.$$

Since L and U are isotonic it follows:

$$LUT_w u \le LUT_w v + \lambda \|u - v\|_V V.$$

Because u and v can be interchanged, we get that LUT_w is also contracting. The statement follows by Banach's Fixed Point Theorem. \Box

In the following lemma $S_{\pi\rho}$ and S are the operators defined by the functional equations (4.9) and (5.16).

Lemma 5.3 For every $w \in \mathfrak{V}$ there are $\pi^* \in \mathbf{E}$, $\rho^* \in \mathbf{F}$ with

$$S_{\pi^*,\rho}w \le Sw \le S_{\pi,\rho^*}w \tag{5.17}$$

for all $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$. Furthermore,

$$Sw := \inf_{\pi \in \mathbf{E}} \sup_{\rho \in \mathbf{F}} S_{\pi\rho} w.$$
(5.18)

Proof: It follows from Lemma 5.1 that there are $\pi^* \in \mathbf{E}$, $\rho^* \in \mathbf{F}$ such that

$$\pi^* \rho T(\frac{u_w}{1-\vartheta}) \leq LUT(\frac{u_w}{1-\vartheta}) \\ \leq \pi \rho^* T(\frac{u_w}{1-\vartheta})$$
(5.19)

where $u_w = Sw$. Hence,

$$\pi^* \rho T_w u_w \le L U T_w u_w = u_w \le \pi \rho^* T_w u_w \tag{5.20}$$

for all $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$. Assume that

$$(\pi^* \rho T_w)^n u_w \le u_w \le (\pi \rho^* T_w)^n u_w$$
(5.21)

for $n \in \mathbb{N}$. Then it follows from (5.20) that

$$u_w \le \pi \rho^* T_w ((\pi \rho^* T_w)^n u_w = (\pi \rho^* T_w)^{n+1} u_w.$$
 (5.22)

Analogously,

$$u_w \ge (\pi^* \rho T_w)^{n+1} u_w.$$
 (5.23)

From (5.22) and (5.23) it follows by mathematical induction that (5.21) holds for all $n \in \mathbb{N}$. For $n \to \infty$ we get (5.17). (5.18) follows immediately from (5.17). \Box

We define a new operator S_{γ} by

$$S_{\gamma}w := -(1 - \mathbf{I}_C)\gamma + Sw - \mathbf{I}_C\mu w$$

for $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$, $w \in \mathfrak{V}$, $\gamma \in \mathbb{R}$. The following lemma gives some properties of this operator.

Lemma 5.4 (a) $S_{\gamma}\mathfrak{V} \subseteq \mathfrak{V}$.

- (b) S_{γ} is isotonic.
- (c) S_{γ} is contracting with modulus λ .
- (d) S_{γ} has in \mathfrak{V} a unique fixed point v_{γ} . It holds $\lim_{n\to\infty} (S_{\gamma})^n u = v_{\gamma}$ for every $u \in \mathfrak{V}$. Moreover, v_{γ} is isotonic and continuous in γ .

Proof: (a) is obvious.

(b) From (4.11) and (5.18) it follows that

$$S_{\gamma}w = \inf_{\pi \in \mathbf{E}} \sup_{\rho \in \mathbf{F}} S_{\gamma,\pi,\rho}w.$$

By Lemma 4.3 we get the statement.

(c) Let $w', w'' \in \mathfrak{V}$. By Lemma 5.3 it follows that there are $\pi'' \in \mathbf{E}$, $\rho' \in \mathbf{F}$, such that

$$Sw' \le S_{\pi,\rho'}w'$$

$$Sw'' \ge S_{\pi'',\rho}w''$$

for all $\pi \in \mathbf{E}$, $\rho \in \mathbf{F}$. Hence,

$$S_{\gamma}w' - S_{\gamma}w'' = -(1 - \mathbf{I}_{C})\gamma + Sw' - \mathbf{I}_{C}\mu w' -(-(1 - \mathbf{I}_{C})\gamma + Sw'' - \mathbf{I}_{C}\mu w'') \leq -(1 - \mathbf{I}_{C})\gamma + S_{\pi'',\rho'}w' - \mathbf{I}_{C}\mu w' -(-(1 - \mathbf{I}_{C})\gamma + S_{\pi'',\rho'}w'' - \mathbf{I}_{C}\mu w'') = S_{\gamma,\pi'',\rho'}w' - S_{\gamma,\pi'',\rho'}w'' \leq \lambda V ||w' - w''||_{V}$$

since $S_{\gamma,\pi'',\rho'}$ is contracting (see Lemma 4.3). Because w' and w'' can be interchanged, we get the statement.

(d) The existence of a unique fixed point $v_{\gamma} \in \mathfrak{V}$ and $\lim_{n\to\infty} (S_{\gamma})^n u = v_{\gamma}$ for every $u \in \mathfrak{V}$ follows from Banach's Fixed Point Theorem. For $\gamma' \leq \gamma$ it holds

$$S_{\gamma}w \leq S_{\gamma'}w = S_{\gamma}w + (1 - \mathbf{I}_C)(\gamma - \gamma') \leq S_{\gamma}w + (\gamma - \gamma')V.$$

Assume that for n > 1

$$S_{\gamma}^{n-1}v_{\gamma'} \le v_{\gamma'} \le S_{\gamma}^{n-1}v_{\gamma'} + \frac{\gamma - \gamma'}{1 - \lambda}V.$$

Then it follows

$$S_{\gamma}^{n}v_{\gamma'} \leq S_{\gamma'}S_{\gamma}^{n-1}v_{\gamma'} \leq S_{\gamma'}v_{\gamma'} = v_{\gamma'} \leq S_{\gamma'}(S_{\gamma}^{n-1}v_{\gamma'} + \frac{\gamma - \gamma'}{1 - \lambda}V)$$

$$\leq S_{\gamma}(S_{\gamma}^{n-1}v_{\gamma'} + \frac{\gamma - \gamma'}{1 - \lambda}V) + (\gamma - \gamma')V$$

$$\leq S_{\gamma}^{n} v_{\gamma'} + \frac{\lambda(\gamma - \gamma')}{1 - \lambda} V + (\gamma - \gamma') V \text{ (see (c))}$$

$$=S_{\gamma}^{n}v_{\gamma'}+\frac{\gamma-\gamma'}{1-\lambda}V.$$

Hence, by mathematical induction we find that this inequality holds for all $n \in \mathbb{N}$. For $n \to \infty$ it follows

$$v_{\gamma} \le v_{\gamma'} \le v_{\gamma} + \frac{\gamma - \gamma'}{1 - \lambda} V.$$

The rest of the statement is implied by this.

Theorem 5.5 There are g = const and $v \in \mathfrak{V}$ with

$$g + v = LUTv. (5.24)$$

It holds

$$g = \inf_{\Pi \in \mathbf{E}^{\infty}} \sup_{P \in \mathbf{F}^{\infty}} \Phi_{\Pi P}.$$

Furthermore, there is an optimal stationary strategy pair.

Proof: From Lemma 5.4 it follows that μv_{γ} is non-increasing in γ . Therefore, there is a γ^* with $\gamma^* = \mu v_{\gamma^*}$.

$$v_{\gamma^*} = S_{\gamma^*} v_{\gamma^*}$$

= $-(1 - \mathbf{I}_C) \gamma^* + S v_{\gamma^*} - \mathbf{I}_C \mu v_{\gamma^*}$
= $S v_{\gamma^*} - \gamma^*.$ (5.25)

Let $w^* := v_{\gamma^*}$. If we put $w = w^*$ in (5.16) then we get

$$Sw^* = LU((1 - \vartheta)(\vartheta k + w^*) + \vartheta pSw^*).$$

It follows by (5.25)

$$w^* + \gamma^* = LU((1 - \vartheta)(\vartheta k + w^*) + \vartheta p(w^* + \gamma^*)).$$

Therefore,

$$\vartheta w^* + (1 - \vartheta)\gamma^* = LU((1 - \vartheta)\vartheta k + \vartheta pw^*).$$

For $g = \frac{\gamma^*}{\vartheta}$, $v = \frac{w^*}{1-\vartheta}$ we get (5.24). From (5.24) and Lemma 5.1 it follows that there are $\pi^* \in \mathbf{E}$, $\rho^* \in \mathbf{F}$, with

$$\pi^* \rho_n T v_{\gamma^*} - g \le v_{\gamma^*} \le \pi_n \rho^* T v_{\gamma^*} + \varepsilon - g$$

29

for all $\Pi = (\pi_n) \in \mathbf{E}^{\infty}$, $P = (\rho_n) \in \mathbf{F}^{\infty}$. It follows

$$\pi^* \rho_0 T \pi^* \rho_1 T \cdots \pi^* \rho_N T v_{\gamma^*} - (N+1)g$$

$$\leq v_{\gamma^*} \leq \pi_0 \rho^* T \pi_1 \rho^* T \cdots \pi_N \rho^* T v_{\gamma^*} - (N+1)g$$

For $N \to \infty$ we get

$$\Phi_{\Pi \rho^{*\infty}} \le g \le \Phi_{\pi^{*\infty} P}$$

for all $\Pi \in \mathbf{E}^{\infty}$, $P \in \mathbf{F}^{\infty}$. This implies

$$g = \inf_{\Pi \in \mathbf{E}^{\infty}} \sup_{P \in \mathbf{F}^{\infty}} \Phi_{\Pi P}$$

and the optimality of $(\pi^{*\infty}, \rho^{*\infty})$. \Box

Heinz-Uwe Küenle Brandenburgische Technische Universität Cottbus Institut für Mathematik PF 101344 D-03013 Cottbus GERMANY Phone: +49 (0355) 69 3151 Fax: +49 (0355) 69 3164 kuenle@math.tu-cottbus.de

References

- Hernández-Lerma, O.; Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Applications of Mathematics 30. Springer-Verlag, New York, 1996
- [2] Hernández-Lerma, O.; Lasserre, J. B.: Further Topics on Discrete-Time Markov Control Processes. Applications of Mathematics 42. Springer-Verlag, New York, 1999
- Küenle, H.-U.: Stochastische Spiele und Entscheidungsmodelle. Teubner-Texte zur Mathematik 89. Teubner-Verlag, Leipzig, 1986
- [4] Küenle, H.-U.: Stochastic games with complete information and average cost criterion. Advances in Dynamic Games and Applications [edited by J.A. Filar, V. Gaitsgory, K. Mizukami] (Annals of the International Society of Dynamic Games, Vol. 5) Birkhäuser, Boston, 2000, 325–338

- [5] Küenle, H.-U.: Equilibrium strategies in stochastic games with additive cost and transition structure. *International Game The*ory Review, 1, 1999, 131–147
- [6] Küenle, H.-U.: On multichain Markov games. Annals of the International Society of Dynamic Games. Birkhäuser, to appear
- [7] Maitra, A.; Sudderth, W.: Borel stochastic games with limsup payoff. Ann. Probab., 21, 1993, 861–885
- [8] Maitra, A.; Sudderth, W.: Finitely additive and measurable stochastic games. *Internat. J. Game Theory*, 22, 1993, 201–223
- [9] Maitra, A.; Sudderth, W.: Finitely additive stochastic games with Borel measurable payoffs. Internat. J. Game Theory, 27, 1998, 257–267
- [10] Meyn, S. P.; Tweedie, R. L.: Markov Chains and Stochastic Stability. Communication and Control Engineering Series. Springer-Verlag, London, 1993
- [11] Neveu, J.: Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco 1965
- [12] Nowak, A. S.: Minimax selection theorems. J. Math. Anal. Appl. 103, 1984, 106–116.
- [13] Nowak, A. S.: Zero-sum average payoff stochastic games with general state space. *Games and Econ. Behavior* 7, 1994, 221–232
- [14] Nowak, A. S.: Optimal strategies in a class of zero-sum ergodic stochastic games. *Math. Meth. Oper. Res.* 50, 1999, 399–419
- [15] Rieder, U.: Average optimality in Markov games with general state space. *Proc. 3rd International Conf. on Approximation and Optimization*, Puebla, 1995