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Bayesian procedures for pricing contingent

claims: Prior information on volatility ∗

Francisco Venegas-Mart́ınez 1

Abstract

This paper develops a Bayesian model for pricing derivative se-
curities with prior information on volatility. Prior information is
given in terms of expected values of levels and rates of precision:
the inverse of volatility. We provide several approximate formulas,
for valuing European call options, on the basis of asymptotic and
polynomial approximations of Bessel functions.
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1 Introduction

When studying market volatility, the standard procedure is to analyze
data. For example, we may explore plots and frequency histograms,
or even examine how observations were collected. However, there is
another approach to study market volatility before data is observed,
which is based on previous practical experience and understanding, the
Bayesian approach. In such a case, the parameters of a sampling model
are regarded as random variables, and all judgements are made in terms
of the degree of belief on potential values of the parameters. In this
framework, a prior distribution is used to describe initial knowledge of
the possible values of the parameters of a sampling model. For exam-
ple, we may feel, based on earlier experience, that our degree of belief
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about the values of a given parameter may be expressed by a specific
probability distribution, which describes initial knowledge.

In pricing contingent claims it is of particular interest to draw infer-
ences about unknown volatility or uncertain volatility parameters of the
underlying asset on the basis of prior information. Considering initial
information before data is observed is not just a sophisticated extension
but an essential issue to be taken into account for the theory and prac-
tice of derivatives. In this paper, we present a new Bayesian method
to price derivative securities when there is prior information on uncer-
tain and changing volatility. In our proposal, investors are rational in
the sense that they use efficiently prior information by choosing a prior
distribution that maximizes logarithmic utility among all admissible dis-
tributions describing available information. After all, the core of finance
theory (mathematical or empirical) is the study of the rational behavior
of investors in an uncertain environment. A study for the behavior of
rational agents in the Mexican case can be seen in Venegas-Mart́ınez
[20].

This paper is organized as follows. In the next section, we mention
some of the limitations of the stochastic volatility approach, and discuss
the need of considering prior information in pricing derivatives. In sec-
tion 3, we review the Bayesian inference framework and its relationship
with information theory. In section 4, we develop a Bayesian model to
price derivative securities and exploit its relationship with Bessel func-
tions. In sections 5 and 6, we examine some asymptotic and polynomial
approximations of the basic Bayesian valuation problem. Through sec-
tion 7, we carry out a comparison of our approach with other models
available in the literature. Finally, In section 8, we draw conclusions,
acknowledge limitations, and make suggestions for further research.

2 Limitations of the stochastic volatility
approach

The most common set-up of the stochastic volatility model consists in a
geometric Brownian motion correlated with a mean-reverting Orstein-
Uhlenbeck process. This approach for pricing derivatives has been
widely studied with a remarkable theoretical progress; see, for instance,
Ball and Roma [3], Heston [10], Renault and Touzi [18], Stein and Stein
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[19], Wiggins [22], and Avellaneda et al. [2]. In particular, the stochas-
tic volatility models allow us to reproduce in a more realistic way asset
returns, specially in the presence of fat tails (Wilmott [23]), asymme-
try in the distribution (Fouque, Papanicolaou, and Sircar [7]), and the
smile effect (Hull and White [11]). However, there is a set of empirical
regularities (or stylized facts) that still need to be explained. In par-
ticular, the existing models do not explain how investors, ranging from
non corporate individual to large trading institution, choose the best
patterns of investment (rational behavior) if there is prior information
on volatility, and its implications when valuing derivatives.

3 The Bayesian approach to price derivative
securities

In the real world, volatility is neither constant nor directly observed.
Hence, it is natural to think of volatility as a non-negative random vari-
able with some initial knowledge coming from practical experience and
understanding before data is observed. This is just the Bayesian way
of thinking about prior information. Under this approach, prior in-
formation is described in terms of a probability distribution (subjective
beliefs) of the potential values of volatility. It is common in Bayesian in-
ference, instead of studying volatility, σ > 0, to study precision, which
is defined as the inverse of the variance, h = σ−2; see, for instance,
Leonard and Hsu [12], and Berger [4]. Thus, the lower the variance,
the higher the precision. More precisely, from the Bayesian point of
view, we have a distribution, Ph, h > 0, describing prior information.
We shall assume that Ph is absolutely continuous with respect to the
Lebesgue measure ν, so that the Radon-Nykodim derivative provides a
prior density, π(h), i.e., dPh/ ν(h) = π(h) for all h > 0. Then, we may
write

Ph{h ∈ A} =

∫
A
π(h)dν(h)

for all Borel sets A.

3.1 Maximum entropy priors

There are several well-known methods reported in the Bayesian litera-
ture to construct densities that incorporate prior information by max-
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imizing a criterion functional subject to a set of constraints in terms
of expected values. Some of such methods are: non-informative priors
(Jeffreys [14]); maximal data information priors (Zellner [24]); maxi-
mum entropy priors (Jaynes [13]); minimum cross-entropy priors, also
known as relative entropy priors (Kullback [16]); reference priors (Good
[8] and Bernardo [5])); and controlled priors (Venegas-Martnez et al.
[21]). We shall specialize in this paper in Jaynes’ maximum entropy for
pragmatic and theoretical reasons that will appear later.

Let us suppose that there is initial information on volatility in terms
of expected values, say

∫
ak(h)π(h)I{h>0}dν(h) = āk, k = 0, 1, 2, ..., N,

where the functions ak(h) are Lebesgue-mesurable known functions and
all the constants āk are known, as well. The maximum entropy princi-
ple states that from all densities satisfying the given information (con-
straints) we should choose the one that maximizes

H[π(θ)] = −
∫
h>0

ln[π(h)]π(h)dν(h).

We define a0(h) ≡ 1 and ā0 = 1 to ensure that the solution is indeed a
proper density. Hence, we are interested in finding π(h) that solves the
following variational problem:

max
π

H[π(θ)] = −
∫
h>0

ln[π(h)]π(h)dν(h),

subject to C :

∫
ak(h)π(h)I{h>0}dν(h) = āk, k = 0, 1, 2, ..., N.

In the sequel, we shall assume that the set of the constraints, C, form a
convex and compact set on π. Since H[π(h)] is strictly concave in π(h),
the solution exists and is unique. In such a case, the necessary condition
for π(h) to be a maximum, is also sufficient. By using standard necessary
conditions derived from calculus of variations (see, for instance, Chiang
[6]), we found that if π(h) is optimal, then

π(h) = e1+λ0 exp

{
N∑
k=1

λkak(h)

}
,(1)

where λk, k = 0, 1, 2, ..., N , are the Lagrange multipliers associated with
the constraints C.
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3.2 Relative entropy

Another useful inference method to estimate an unknown probability
density, π(h), when there is an initial estimate p(h) of π(h), and infor-
mation about precision h in terms of expectations, is based on deter-
mining π(h) that solves the following variational problem:

min
π

∫
h>0

π(h) ln
π(h)

p(h)
dν(h),

subject to:

∫
π(θ)I{h>0}dν(h) = 1,∫
ak(h)π(h)I{h>0}dν(h) = āk, k = 1, 2, ..., N.

The quantity
∫
h>0 π(h) ln(π(h)/p(h))dν(h) is called the relative en-

tropy between π(h) and p(h), and satisfies a set of axioms of consistency:
uniqueness of the final estimate; invariance under one-to-one coordinate
transformations; system independence; and subset independence. In
this case, if π(h) is optimal, we have that

π(h) = p(h)e1+λ0 exp

{
N∑
k=1

λkak(h)

}
,

where λk, k = 0, 1, 2, ..., N , are the Lagrange multipliers associated with
the constraints. Observe that when the initial estimate is a uniform
density, then relative entropy becomes entropy, as defined in section
3.1. Finally, it is important to mention the work of Avellaneda, Levy,
and Parás [1] on derivative securities when modeling potential volatility
values occurring within an open interval using relative entropy.

3.3 Examples of priors on precision

Suppose that prior information on precision is given in terms of expected
values of levels and rates. That is, prior knowledge is expressed as:∫

h>0
hπ(h)dν(h) =

β

α
,(2)

and ∫
h>0

ln(h)π(h)dν(h) = ψ(α)− ln(β),(3)
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where α > 0, β > 0, ψ(α) = dΓ(α)/dα, and Γ(·) is the Gamma function.
Notice that for given expected values on levels and rates, equations (2)
and (3) become a nonlinear system in the variables α and β. Since
entropy is strictly concave and the Gamma distribution is the unique
distribution that satisfies (2) and (3), we find that

π(h|α, β) = hα−1βαe−βh

Γ(α)
, h > 0, α > 0, and β > 0,(4)

solves the maximum entropy problem. Another priors of interest, after
some changes of variable, could be:

π

(
1

h

∣∣∣∣∣α, β
)

=
hα+1βαe−βh

Γ(α)
, h > 0, α > 0, and β > 0,(5)

π

(
1√
h

∣∣∣∣∣α, β
)

=
2hα+

1
2βαe−βh

Γ(α)
, h > 0, α > 0, and β > 0,(6)

and

π

(
ln

(
1

h

) ∣∣∣∣∣α, β
)

=
βαe−βe− ln(1/h)−ln(1/h)

Γ(α)
,

h > 0, α > 0, and, β > 0, which stand, respectively, for prior distribu-
tions of σ2, σ, and ln(σ2). In any case, the best choice should reflect
what has been learned from previous practical experience.

4 Statement of the basic Bayesian valuation
problem

Let us consider a Wiener process (Wt)t≥0 defined on some fixed filtered
probability space (Ω,F , (Ft)t≥0, IP), and a European call option on an
underlying asset whose price at time t, St, is driven by a geometric
Brownian motion accordingly to

dSt = rSt dt+ h−1/2StdWt,

that is, (Wt)t≥0 is defined on a risk neutral probability measure IP.
Notice that the stochastic differential equation driving the price of the
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underlyng asset depends only on the risk-free rate of interest. The drift
is independent of risk preferences about the expected return on the asset.
In this case, investors do not require a premium as long as volatility
remains constant. Girsanov’s theorem can be used to remove a drift
with risk preferences by providing an equivalent risk neutral probability
measure (see, for instance, Fouque, Papanicolaou, and Sircar [7].). The

option is issued at t0 = 0 and matures at T > 0 with strike price X.
Under the Bayesian framework, we have that the price, at time t0 = 0,
of the contingent claim when there is prior information on volatility, as
expressed in (4), is given by:

c(S0, T,X, r|α, β) = e−rTE(π) {E [max(ST −X, 0)|S0]}

= e−rT
∫
h>0

{∫
s>X

(s−X)f
ST |S0

(s)ds

}
π(h)dν(h),(7)

where the conditional density of ST given S0 satisfies

f
ST |S0

(s) =
h1/2

s
√
2πT

exp

{
− h

2T

(
G(s) +

T

2h

)2
}
,

and

G(s) = ln

(
s

S0e−rT

)
.

If we assume that the required conditions to apply Fubinis’ theorem are
satisfied, so we can guarantee that integrals can be interchanged, then
(7) becomes

c =
e−rTβα√
2πTΓ(α)

∫
s>X

(
1− X

s

)
I(s|α, β)ds,(8)

where

I(s|α, β) =
∫
h>0

exp

{
− h

2T

(
G(s) +

T

2h

)2
}
hα−

1
2 e−βhdν(h).(9)

Notice now that (9) can be, in turn, rewritten as

I(s|α, β) = exp

{−G(s)
2

}∫
h>0

exp

{
−A(s)h− B

h

}
hδ−1dν(h),(10)
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where

A(s) =

(
G(s)2

2T
+ β

)
> 0, B =

T

8
> 0, and δ = α+

1

2
> 0.

The integral in (10) satisfies (see, for instance, Gradshteyn and Ryzhik
[9])

∫
h>0

exp

{
−A(s)h− B

h

}
hδ−1dν(h) = 2

(
B

A(s)

) δ
2

Kδ

(
2
√
BA(s)

)
,

(11)
where Kδ(x), x = 2

√
BA(s), is the modified Bessel function of order δ,

which is solution of the second-order ordinary differential equation (see,
for instance, Redheffer [17])

y′′ +
1

x
y′ −

(
1 +

δ2

x2

)
y = 0, x > 0.(12)

We also have that Kδ(x) is always positive, and Kδ(x) → 0 as x →
∞. Equation (11) is of noticeable importance since it says that all the
additional information on volatility provided by the prior distribution
and the relevant information on the process driving the dynamics of the
underlying asset are now contained in Kδ.

4.1 Constant elasticity of return variance

In this section, we deal with the constant elasticity instantaneous vari-
ance case. Let us assume the underlying asset, St, evolves according
to

dSt = rSt dt+ h−1/2S
b/2
t dWt,

where the elasticity of return variance with respect to the price is
defined as b− 2. If b = 2, then the elasticity is zero and asset prices are
lognormally distributed. In this section, we are concerned with the case
b < 2. After computing the Jacobian for transforming W. t ∼ N (0, t.)
into ST , we find that the conditional density of ST given St satisfies

f
ST |S0

(s) =
h

δ
D[UV (s)1−2b]1/(4−2b)e−h[U+V (s)]Iδ

(
2h
√
UV (s)

)
,

where
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δ = 1/(2− b),

D =

[
2r

(2− b)[er(2−b)T − 1]

]1/(2−b)

,

U =
(
DS0e

rT
)2−b

,

V (s) = (Ds)2−b,

and Iδ(x), x = 2h
√
UV (s), is the modified Bessel function of the first

kind of order δ. If we assume that prior distribution is described by a
Gamma density, then

c =
De−rTβα

δ
√
2πTΓ(α)

∫
s>X

(s−X)
[
UV (s)1−2b

]1/(4−2b)
J (s|α, β)ds,

where

J (s|α, β) =
∫
h>0

hαe−h[β+U+V (s)]Iδ

(
2h
√
UV (s)

)
dν(h)

which is related with the non-central chi-square density function. More-
over,

Iδ

(
2h
√
UV (s)

)
=

∞∑
k=0

hδ+2k [UV (s)]k+(δ/2)

Γ(k + 1)Γ(δ + k + 1)
.

Hence,

J (s|α, β) =
∞∑
k=0

[UV (s)]k+(δ/2)

Γ(k + 1)Γ(δ + k + 1)

∫
h>0

hα+δ+2ke−h[β+U+V (s)] dν(h)

=
[UV (s)]δ/2

(β + U + V (s))α
∑
k=0

∞ [UV (s)]k Γ [α+ δ + 2k + 1]

Γ(k + 1)Γ(δ + k + 1)
.

In the particular case that there is not prior information, the solution
of maximizing H[π(θ)], subject only to the normalizing constraint, will
lead to an improper uniform prior distribution, say π(h) ≡ 1 almost
everywhere with respect to ν, then if z = [V (s)/D]1/(2−b), equivalently
V (s) = Dz2−b, we have

c = S0

∫ ∞

hDX2−b
eh(U+Dz2−b)

(
Dz2−b

U

)1/(4−2b)

Iδ
(
2h

√
UDz2−b

)
dz

+ Xe−rT
∫ ∞

hDX2−b
eh(U+Dz2−b)

(
U

Dz2−b

)1/(4−2b)

· Iδ
(
2h

√
UDz2−b

)
dz,
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where the following identity holds∫ ∞

hDX2−b
eh(U+Dz2−b)

[(Dz2−b

U

)1/(4−2b)

+

(
U

Dz2−b

)1/(4−2b) ]
Iδ
(
2h

√
UDz2−b

)
dz = 1.

5 Asymptotic approximations for the basic
Bayesian valuation problem

In this section, we find an asymptotic approximate formula for pricing
vanilla contingent claims according to equation (8)-(11). In order to use
asymptotic approximations for equation (11), we have to make some
assumption on the strike price, X. Note first, that if the strike price
X is large, then x is large. In such a case, we may use the following
approximation (see, for instance, Gradshteyn and Ryzhik [9]):

Kδ(x) ∼ K̂δ(x) =

√
π

2x
e−x

(
1 +

4δ2 − 1

8x

)
,

which, in practice, performs well. In this case, we have the estimate
price

ĉ = S0M̂1(S0, T,X, r|α, β)− e−rTXM̂2(S0, T,X, r|α, β),

where

M̂1 =

√
2βα

S0
√
πTΓ(α)

∫ ∞

X
e−(

1
2
G(s)+r)

(
T

8A(s)

) δ
2

K̂δ(2
√
BA(s))ds,

and

M̂2 =

√
2βα√

πTΓ(α)

∫ ∞

X

1

s
e−

1
2
G(s)

(
T

8A(s)

) δ
2

K̂δ(2
√
BA(s))ds.

The integrals M̂1 and M̂2 can be approximated with simple procedures
in MATLAB by using a large enough upper limit in the integral. The
upper limits of the integrals M̂1 and M̂2 are taken large enough so that
the values of M̂1 and M̂2 have no sustantial change when larger uper
limits are used (within an error of 0.0001). Figure 1 shows the values
of ĉ as a function of α (δ = α+ 1

2) and β, with S0 = 42.00, X = 41.00,
r = 0.11, and T = 0.25.
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Figure 1. Values of ĉ as a function of α and β.

6 Polynomial approximations for the basic
Bayesian valuation problem

Polynomial approximations, for the basic Bayesian valuation problem
stated in (8)-(11), can be done only for some numerical values of the
parameters. In this case, we apply the Frobenius’ method to obtain an
approximate polynomial of finite order. Let us consider the particular
case α = 0.5, i.e., δ = 1, in equation (9). The following polynomial
approximation is based on Frobenius’ method of convergent power-series
expansion:

K1(x) =
1

x

[
x ln

(
x

2

)
I1(x) +

6∑
k=0

ak

(
x

2

)2k

+ ϵ

]
, 0 < x ≤ 2,(13)

where a0 = 1, a1 = 0.15443144, a2 = −0.67278579, a3 = −0.18156897,
a4 = −0.01919402, a5 = −0.0110404, a6 = −0.00004686, and
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I1(x) = x

[
6∑

k=0

bk

(
4x

5

)k

+ ϵ

]
, 0 < x ≤ 15

4
,

where b0 = 1/2, b1 = 0.878900594, b2 = 0.51498869, b3 = 0.15084934,
b4 = 0.02658733, b5 = 0.00301532, b6 = 0.00032411, and ϵ < 8 × 10−9.
The complementary polynomial are given by

K1(x) =
1√
xex

ln

(
x

2

)
I1(x) +

6∑
k=0

āk

(
x

2

)−2k

+ ϵ̄, x > 2,(14)

where ā0 = 1.25331414, ā1 = 0.23498619, ā2 = −0.03655620, ā3 =
0.01504268, ā4 = −0.00780353, ā5 = 0.00325614, ā6 = −0.00068245,
and

I1(x) = x

[
8∑

k=0

b̄k

(
4x

5

)−k

+ ϵ̄

]
, x >

15

4
,

where b̄0 = 39894228, b̄1 = −0.03988024, b̄2 = −0.00362018, b̄3 =
0.00163801, b̄4 = −0.01031555, b̄5 = 0.02282967, b̄6 = −0.02895312,
b̄7 = 0.01787654, b̄8 = −0.00420059, and ϵ̄ < 2.2×10−7. It is important
to point out that K1(x) and I1(x) are linearly independent modified
Bessel functions, thus they determine a unique solution of Bessel differ-

ential equation. If we denote by K
(ϵ)
1 (x) the polynomial approximation

in (13) and (14), we get from (8)-(11) the following call option price:

c(ϵ) = S0M1(S0, T,X, r|α = 0.5, β)− e−rTXM2(S0, T,X, r|α = 0.5, β),

where

M(ϵ)
1 =

β
1
2

2S0π

∫ ∞

X
e−(

1
2
G(s)+r) [A(s)]−

1
2 K

(ϵ)
1

√TA(s)

2

 ds,
and

M(ϵ)
2 =

β
1
2

2π

∫ ∞

X

1

s
e−

1
2
G(s) [A(s)]−

1
2 K

(ϵ)
1

√TA(s)

2

 ds.
As before, integralsM(ϵ)

1 andM(ϵ)
2 can be approximated by using simple

procedures in MATLAB. Figure 2 shows the values of c(ϵ) as a function
of β with α = 0.5, S0 = 42.00, X = 41.00, r = 0.11, and T = 0.25.
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Figure 2. Values of ĉ(ϵ) as a function of β.

7 Comparison with other models available in
the literature

In the Mexican case, there is not an exchange for trading options, and
the over-the-counter market on options is an incipient market, so data
is poor in both quantity and quality. Hence, it is impossible to carry
out a reliable empirical analysis to compare market option prices with
our theoretical prices. However, we work out an interesting numerical
experiment. In this experiment, we compare our prices with two other
prices from models available in the literature. In figure 3, the case of
the classical Black and Scholes’ price, as a function of the strike price,
is considered as a benchmark with parameter values S0 = 100, T = 0.5,
r = 0.05, and σ = 0.2, and is represented by the solid line. The Korn
and Wilmott’s [15] price with subjective beliefs on future behavior of
stock prices is represented by the dashed line. The parameter values
in the Korn and Wilmott’s [15] model are µ = 0.1, α = 0.33, β =
3.33, and γ = 0.1. Finally, the doted line shows our price ĉ(ϵ) with
prior information on levels and rates. We examined, in this experiment,
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about 800 different combinations of the parameter values α and β, with
parameter values β = 17 and α = 0.5. Notice that option prices with
prior information on levels are higher than option prices with only prior
information on future prices. As expected, Black and Scholes prices are
smaller than option prices with any prior information.

Figure 3. Option values as a function of the strike price.

8 Summary and conclusions

Prior information is a subjective issue, that is, different individuals have
different initial beliefs. It is difficult to accept that all individuals par-
ticipating in a specific market can describe their initial knowledge with
the same functional form for the prior distribution, and it is still more
difficult to recognize as being true that all of such distributions have
the same parameters. The existence of a prior distribution is useful to

describe initial beliefs in much more complex markets than those in a
naive Black-Scholes. In a richer stochastic environment, we have devel-
oped a Bayesian procedure to value a European call option when there
is prior information on uncertain or changing volatility. In conclusion,
the existence of a prior distribution is useful to describe initial beliefs
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in much more complex markets than those in a naive Black-Scholes.
Needless to say, Monte Carlo methods should be developed and applied
in our proposed framework, and that will be our next goal.

Francisco Venegas-Mart́ınez
C. de Investigación en Finanzas,
Tecnológico de Monterrey,
14380 México D.F., MEXICO,
fvenegas@itesm.mx

References

[1] Avellaneda, M.; Levy, A.; Parás, A., Pricing and Hedging Deriva-
tive Securities in Markets with Uncertain Volatilities, Appl. Math.
Finance, 2 (1995), 73-88.

[2] Avellaneda, M.; Friedman, C.; Holmes, R.; Samperi, D., Cali-
brating Volatility Surfaces Relative-Entropy Minimization, Appl.
Math. Finance, 4 (1996), 37-64.

[3] Ball, C.; Roma, A., Stochastic Volatility Option Prices, J. Finan-
cial and Quantitative Analysis, 24 (1994), 589-607.

[4] Berger, J. O., Statistical Decision Theory and Bayesian Analysis,
Second edition, Springer-Verlag, New York, 1985.

[5] Bernardo, J. M., Reference Posterior Distributions for Bayesian
Inference, J. Roy. Statist. Soc., B41 (1979), 113-147.

[6] Chiang, A. C., Elements of Dynamic Optimization, McGraw-Hill
Inc, 1992.

[7] Fouque, J.; Papanicolaou, G.; Sircar, K. R., Derivatives in Fi-
nancial Markets with Stochastic Volatility, Cambridge University
Press, 2000.

[8] Good, I. J., What is the Use of a Distribution? In Multivariate
Analysis, (Krishnaia, ed.), Vol. II, 183-203, Academic Press, New
York, 1969.

[9] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and
Products, Sixth Edition, Academic Press, 2000.



40 Francisco Venegas-Mart́ınez

[10] Heston, S., A Closed-form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options, Re-
view of Financial Studies, 6 (1993), 327-343.

[11] Hull, J.; White, A., The Pricing of Option on Assets with Stochas-
tic Volatility, J. Finance, 62 (1987), 281-300.

[12] Leonard, T.; Hsu, J. S. J., Bayesian Methods: An Analysis for
Statisticians and Interdisciplinary Researchers, Cambridge Series
in Statistical and Probabilistic Mathematics, Cambridge Univer-
sity Press, 1999.

[13] Jaynes, E. T., Prior Probabilities, IEEE Transactions on Systems
Science and Cybernetics, SSC-4 (1968), 227-241.

[14] Jeffreys, H., Theory of Probability, Third edition, Oxford Univer-
sity Press, London, 1961.

[15] Korn, R.; Wilmott, P., Option Prices and Subjective Probabili-
ties, Working paper, Mathematical Finance Group, Mathematical
Institute, Oxford University, 1996.

[16] Kullback, S., An Application of Information Theory to Multivari-
ate Analysis, Ann. Math. Statistics, 27 (1956), 122-146.

[17] Redheffer, R., Differential Equations: Theory and Applications,
Jones and Bartlett Publishers, Boston, MA, 1991.

[18] Renault, E.; Touzi, N., Option Hedging and Implied Volatility in
a Stochastic Volatility Model, Math. Finance, 6 (1996), 279-302.

[19] Stein, E.; Stein, J., Stock Price Distribution with Stochastic
Volatility: An Analytic Approach, Review of Financial Studies,
4 (1991), 727-752.

[20] Venegas-Mart́ınez, F., Temporary Stabilization: A Stochastic
Analysis, Journal of Economic Dynamics and Control, 25(9)
(2001), 1429-1449.

[21] Venegas-Mart́ınez, F.; de Alba, E.; Ordorica-Mellado, M., On In-
formation, Priors, Econometrics, and Economic Modeling, Estu-
dios Econmicos, 14 (1999), 53-86.

[22] Wiggins, J., Option Values under Stochastic Volatility, J. of Fi-
nancial Economics, 9(2) (1996), 351-372.



Bayesian Procedures 41

[23] Wilmott, P., Derivatives, The Theory and Practice of Financial
Derivatives, John Wiley & Sons Ltd, 1998.

[24] Zellner, A., Maximal Data Information Prior Distributions. In
New Methods in the Applications of Bayesian Methods, A Aykac,
and C. Brumat (Eds), North-Holland, 1977.


