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Bilinear maps, embeddings, topological
complexity and antisymmetric index of

projective spaces. ∗

Carlos Domínguez 1

Abstract

We provide a straight new proof using direct calculations on in-
tegral cohomology which can be considered as a substitute, in an
infinite number of cases, for a fact concerning bilinear maps, (em-
beddings) immersions and (symmetric) topological complexity of
projective spaces, and equivariant maps.
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1 Introduction

When the classical embedding problem for smooth manifolds is restricted
to the case of real projective spaces, it may be seen as a connection
between real bilinear, embeddings, and equivariant type problems. In
this article it is intended to describe this question starting from some
results in the work of A. Haefliger [16] and H. Hopf [18] on the matter.

The existence of a symmetric nonsingular bilinear map Rm ×Rm →
Rk gives an embedding of the projective space RPm−1 → Rk−1, and
an embedding of a topological space X → Rk defines a Z2−equivariant
map X × X − ∆ → Sk−1. In these three cases the main question is,
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what is the minimum k such that there exist these kind of maps? For
the equivariant case we refer to this number as the antisymmetric index
of X.

If X is a compact manifold, calculating its antisymmetric index and
its embedding dimension are equivalent matters in Haefliger’s range es-
tablished in theorem 2.1. Outside of that range it is not known in general
if the existence of an equivariant map implies an embedding in this con-
text, but also, to decide whether or not an equivariant map exists within
this range has not a definite answer yet. For real projective spaces this
is still an open question in a finite number of cases. Solving the known
ones can be considered as the starting point in the work of J. Adem,
S. Gitler, and I. M. James [1] on immersions. Immersion concept for
projective spaces was related to a relatively new sectional category type
definition of M. Farber, the so called topological complexity by Farber,
Tabachnikov, and Yuzvinsky [11]. It was proved by J. Gonzalez and P.
Landweber [15] that the calculation of the symmetric version of topo-
logical complexity and the antisymmetric index are equivalent for real
projective spaces. This gives most of the known answers on the topic
until now, see Theorem 3.8.

Non embedding results for projective spaces give lower bounds for
most of the cases in the problems described in the second paragraph of
this section. As it is well known, the embedding problem has been stud-
ied for long time in topology [19]. We focus our attention on works by M.
Mahowald [22] and J. Levine [21] which give the embedding dimension of
RP 2e+1 for all e. Using the arguments given in previous paragraph, this
gives a complete answer in the said dimensions, the method could be con-
sidered as category, immersion, and embedding combination techniques
worked out for about fifty years. After the work of Gonzalez-Landweber
[15], only the antisymmetric index of RP 3, RP 5 remained unknown (we
are still talking about dimensions equal to 2e + 1) as non-immersion
results do not give answer for this couple of cases. Studying integral co-
homology of RP 3×RP 3−∆ gives the answer for e = 1, as shown by J.
Gonzalez in [14]. Following this idea it was obtained the integral coho-
mology ring of RPm×RPm−∆ for all m by J. Gonzalez, P, Landweber
and the author in [7], which answered the case e = 2. Actually, calcula-
tions in the integral cohomology ring allowing us to recover these results,
for all e, in a direct way which can be considered as an “antisymmetric
index type technique”. Here we emphasize on the novelty of this proof
rather than on the results in this article.

In Section 2 we recall some classical definitions an well known theo-
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rems. Section 3 is about the role of topological complexity on the mat-
ter, and in the final section, we describe the idea and write out our new
proof which has as a consequence some results concerning real symmetric
non-singular bilinear maps also implied by well known (non-)embedding
theorems for real projective spaces due to H. Hopf, J. Levine, and M.
Mahowald .

2 Some classical results on embeddings, equiv-
ariant, and bilinear maps

Let X be a topological space, we denote by F (X, 2) the space X×X−∆,
where ∆ is the diagonal in X ×X. Of course this is the space of pairs
of different points in X, also known as the configuration space of two
points in X. If now we consider the group of two elements Z2 = {1,−1}
there is an action of this group on F (X, 2) given by (−1)(x, y) = (y, x).
We refer to this action as the symmetric action of Z2 on F (X, 2). The
orbit space resulting from the symmetric action is denoted as B(X, 2)
and is the space of pairs of unordered points in X commonly named the
unordered configuration space of two points in X.

Let Sn−1 be the n−1 dimensional sphere contained in the Euclidean
space Rn, the antipodal action of Z2 helps to state the classical question,
what is the least integer n such that there exits an equivariant map

f : F (X, 2)→ Sn−1

with respect to the symmetric and antipodal actions? Such a map is
called antisymmetric, and te minimal such n is called antisymmetric
index of X, and it is denoted by Ias(X).

This question is important due to its connection with the embedding
problem of manifolds stated by A. Haefliger as follows. Suppose M is a
k−dimensional smooth manifold embedded in Rn via g : M → Rn, then
this would define an antisymmetric map f : F (M, 2)→ Sn−1 defined by
the formula

f(x, y) =
g(x)− g(y)

||g(x)− g(y)||
.

In the work of Haefliger [16] we can find the following result.

Theorem 2.1. Suppose M is an m−dimensional smooth compact man-
ifold. Then, M smoothly embeds in Rn if there exists an antisymmetric
map F (M, 2)→ Sn−1 and n ≥ 3

2(m+ 1).
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When M is the real m−dimensional projective space RPm there are
other relations concerning this kind of question coming from a problem
in algebra and is about systems of real symmetric bilinear forms.

Consider a homogeneous system of real symmetric bilinear equations

f1(x, y) = a111x1y1 + · · ·+ a1rrxmym = 0

...
...

...
fn(x,y) = an11x1y1 + · · ·+ anmmxmym = 0.(1)

This means that every fi : Rm × Rm → R, i = 1 . . . n, is real symmetric
(fi(x, y) = fi(y, x) for all x, y ∈ Rm) bilinear form. A trivial solution
to this system is one of the form (0, y) ∈ Rm ×Rm. The problem about
whether there exists a non-trivial solution to (1) was established by
Stiefel, and Hopf gave in [18] a topological context for the problem. In
general, the system (1) defines a map

µ : Rm × Rm → Rn

which is bilinear and symmetric, when the system only has non-trivial
solutions we say that µ is non-singular.

Hopf’s idea is as follows, suppose µ is bilinear, symmetric, and non-
singular, then it defines a map f : RPm−1 → Sn−1 by

f([x]) =
µ(x, x)

||µ(x, x)||
.

It is not difficult to prove that this map is well defined, continuous, and
injective, a topological embedding; and for m > 2 it would give an em-
bedding of RPm−1 in Rn−1 . Then the question, given a projective space
RP r, does there exist an Euclidean model for it? arose in this context.
Following this line, real and complex polynomial product provides sym-
metric non-singular bilinear maps for odd and even dimensional cases,
giving well known embedding results for real projective spaces.

Theorem 2.2. Let m be higher than 2. If m is odd, RPm−1 can be
embedded in R2m−2. For even m, it can be embedded in R2m−3.

It is remarkable that Hopf also proved:

Theorem 2.3. [18, 8] If m > 2, it is not possible to embed RPm−1 in
Rm.
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Let us call E(k) and N(k) to the least dimension of a Euclidean
space where it is possible to embed RP k and such that there exists a
real symmetric non-singular bilinear map from Rk × Rk respectively.
Then, Theorems 2.2 and 2.3 prove at the same time.

Theorem 2.4.

1. k + 2 ≤ E(k) ≤ N(k + 1)− 1 ≤

{
2k-1 if k is odd,
2k if k is even.

2. The Fundamental Theorem of Algebra.

3. N(3) = 5, and N(4) = 6.

4. E(2) = 4, and E(3) = 5.

We remark the following direct inequalities:

(2) Ias(RP k) ≤ E(k) ≤ N(k + 1)− 1.

Some numerical conditions can be given on the existence of nonsin-
gular real homogeneous bilinear systems by using different topological
methods, a good reference for this matter is [20].

3 Antisymmetric index in relation to (symmet-
ric) topological complexity and (embeddings)
immersions of real projective spaces

From the study of robot motion planning problem, a couple of topolog-
ical concepts, the (Symmetric) Topological Complexity, were extracted
by M. Farber and M. Grant [9, 10]. These concepts were formalized
using a Lusternik-Schnirelmann Category type notion, namely Sectional
Category. We refer to [4] for a general introduction to L-S Category and
related topics.

The sectional category of a continuous map p : E → B, secat(p), is
one less than the smallest number of open sets U covering B in such a
way that p admits a (continuous) section over each U. Note that we are
using a normalized version of the concept for notational considerations
in some of the relations appearing in this article.

Consider the following diagram of fibrations,
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(3)

P2(X) P1(X) P (X)

B(X, 2) F (X, 2) X ×X,
?

p2

?

p1

-�

?

p

-�

where: P (X) is the free path space X [0,1] with the compact-open topol-
ogy, p is the end-points evaluation map, and P1(X) is the subspace of
P (X) obtained by removing the free loops on X (p1 is the restriction of
p). The group Z/2 acts freely on both P1(X) and F (X, 2), by running a
path backwards in the former (i.e. via γ 7→ γ′ where γ′(t) = γ(1−t)), and
by symmetric action on the latter. Furthermore, p1 is a Z/2-equivariant
map, so that P2(X) and B(X, 2) are the corresponding orbit spaces, and
p2 : P2(X)→ B(X, 2) denotes the fibration induced by p1.

The Topological Complexity of X is TC(X) = secat(p) and the
Symmetric Topological Complexity of X is defined as

TCS(X) = secat(p2) + 1.

Suppose U is an open subset of B(X, 2) such that there exists a
continuous section U → P2(X), with respect to p2, let Ũ be the inverse
image of U under the double covering map F (X, 2) → B(X, 2), then
there exists an equivariant section for p1 on Ũ . From this fact and asking
X to be an ENR, see Lemma 8 in [10], it is proved the following:

Theorem 3.1. [10]
TC(X) ≤ TCS(X).

We will use this result for real projective spaces in connection with
embeddings and immersions. For the last one, concepts of Axial and
nonsingular maps are remarked now in the context of [11].

A continuous map g : RPm × RPm → RP k,m < k, is called axial if
its restriction on each axis is homotopic to the inclusion RPm ↪→ RP k.
A continuous map f : Rm×Rm → Rk is called nonsingular if f(x, y) = 0
then x = 0 or y = 0 and f(λx, y) = f(x, λy) = λf(x, y) for all x, y ∈ Rm
and λ ∈ R.

In [11] M. Farber, S. Tabachnikov, and S. Yuzvinsky proved that,
if 1 < m < k, there is a bijection between the existence of axial maps
RPm × RPm → RP k, and nonsingular maps Rm+1 × Rm+1 → Rk+1.
But the main result from the cited work is the next one.
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Theorem 3.2. [11] TC(RPm) coincides with the smallest k such that
there exists a nonsingular map Rm+1 × Rm+1 → Rk+1.

To relate previous concepts, next classical theorem by J. Adem, S.
Gitler, and I. M. James is the key point.

Theorem 3.3. [1] There exists an immersion RPm → Rk (where k >
m) if and only if there exists an axial map RPm × RPm → RP k.

Now immersion and categorical concepts can be related in this con-
text.

Theorem 3.4. [11] For any m 6= 1, 3, 7, the number TC(RPm) equals
the smallest k such that the projective space RPm admits an immersion
into Rk

On the other hand, regarding to embeddings and antisymmetric in-
dex of projective spaces, the question about whether they are equal or
not remains open in general, but a partial answer on this matter, was
given by J. González and P. Landweber using (symmetric) topological
complexity in [15]. In the following we give a slightly more direct proof
of that result plus some cases obtained in [14, 7]. The starting point is
the following theorem, which can be considered as the analogue of 3.2
(note that what we call antisymmetric index is named level there).

Theorem 3.5. [15] For all m ∈ N

TCS(RPm) = Ias(RPm).

Let us denote by Imm(m) to the smallest dimension of the euclidean
space where it is possible to immerse the real projective space RPm.
Then from (2), 3.1, 3.4, and 3.5 we immediately obtain:

Theorem 3.6. Suppose m 6= 1, 3, 7, then

Imm(m) = TC(RPm) ≤ TCS(RPm) =

Ias(RPm) ≤ E(RPm) ≤ N(m+ 1)− 1.

Note that, from previous theorem, if there exists an antisymmetric
map F (RPm, 2) → Sn−1, then there must exits an immersion RPm →
Rn(m 6= 1, 3, 7). The following results on immersions concerns the nu-
merical range established in Theorem 2.1.
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Lemma 3.7. Let m be higher than 15 or equal to 8, 9, 13. An immersion
of RPm → Rn can exists only if 2n ≥ 3(m+ 1).

Proof. For cases m ≤ 22 it is just necesary to see the table at the end of
[19]. For m ≥ 23 non immersion results follow from [1, 5] finishing the
proof.

Starting in an idea first observed by A. J. Berrick, S Feder, and S.
Gitler in [2], it is possible to determine in almost all of cases whether
E(RPm) and Ias(RPm) are equal or not just by applying Theorem 2.1
and Lemma 3.7. Therefore, from 3.5, it is obtained the following result
which can be considered as the analogue of 3.4.

Theorem 3.8. Let m ∈ {1, 2, 3, 4, 5, 8, 9, 13} and r > 15. Then:

1. TCS(RPm) = Ias(RPm) = E(RPm).

2. There exists a smooth embedding of RPm in a Euclidean space if
and only if there exists a topological embedding in the same Eu-
clidean space.

Proof. In view of previous paragraph, item 1 follows from Lemma 3.7
and Theorem 2.1 for m ∈ {8, 9, 13} and m > 15. Cases m = 1, 2, 4 were
treated in [15]. m = 3 was proved in [14], and m = 5 was obtained in
[7]. In the final section of this work we will comment on these couple of
cases.

To prove item 2, just apply Theorem 2.1 and the second equality in
previous item. This kind of argument was remarked by I. M. James in
[19] at the end of his introduction.

Now any numerical result for embedding dimensions in the range es-
tablished by previous theorem gives the corresponding answer for sym-
metric topological complexity and antisymmetric index for real projec-
tive spaces, we remark the following, because we will recover it from
different point of view in final section.

Theorem 3.9.

TCS(RP 2e+1) = Ias(RP 2e+1) = 2e+1 + 1.

Proof. From previous theorem it is just a consequence of embedding
results for the corresponding projective spaces due to M. Mahowald [22]
or J. Levine [21].
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4 The calculation of a family of antisymmetric
indices from the cohomology of reduced sym-
metric product of Projective spaces.

A classical point of view [17] to calculate the antisymmetric index of
projective spaces, as it is argued after the proof of Lemma 4.4, comes
from the cohomology of B(RP k, 2). This space is also known as the
reduced symmetric product of RP k. The corresponding cohomology ring
structure with coefficients in Z/2 was calculated by Handel in [17], see
also [6, 12, 13]. These results together with obstruction theory gave
some embedding results for projective spaces [17].

Theorem 4.1. [17]

H∗(B(RPm−1, 2),Z/2Z) ∼=
Z
2Z [u, v, w]

J
,

such that, dim(u) = dim(v) = 1, dim(w) = 2, and J is the ideal, of the
polynomial ring Z

2Z [u, v, w], generated by the three elements:∑
i=0

(
m− 1− i

i

)
vm−1−2iwi,

∑
i=0

(
m− i
i

)
vm−2iwi, and uv + u2.

From the antisymmetric index point of view, J. Gonzalez started
studying the problem of calculating the symmetric topological complex-
ity of projective spaces in [14]. He obtained the value of TCS(RP 3),
proposing the calculation of integral cohomology of B(RPm, 2), which
was finally achieved basically by the usage of Bokstein spectral sequence
and 4.1 in [7].

Theorem 4.2. [7] Let m = 2t, t ≥ 1. The integral cohomology ring
H∗(B(RPm, 2)) is generated by five classes a2, b2, c3, d4 and e2m−1,
where subscripts denote dimension of the corresponding element, subject
only to the relations (where we are omitting the subscripts):

1. 2a = 2b = 2c = 4d = 0;

2. b2 = ab;

3. c2 = ad;

4.
∑(

i+j
j

)
aicdj = 0, where the sum runs over i, j ≥ 0 with i+ 2j =

t− 1;
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5.
∑(

i+j
j

)
aibdj =

{
2d

t+1
2 , t odd,

0, t even,
where the sum runs over i, j ≥ 0

with i+ 2j = t;

6.
∑(

i+j
j

)
ai+1dj = 0, where the sum runs over i, j ≥ 0 with i+2j =

t;

7.
∑(

i+j
j

)
aicdj = 0, where the sum runs over i, j ≥ 0 with i+ 2j =

t;

8.
∑(

i+j
j

)
aibdj+1 =

{
2d

t+2
2 , t even,

0, t odd,
where the sum runs over i, j ≥

0 with i+ 2j = t− 1;

9. dt = 0;

10. eε = 0, for ε ∈ {a, b, c, d, e}.

Theorem 4.3. [7] Let m = 2t+ 1, t ≥ 0. The integral cohomology ring
H∗(B(RPm, 2)) is generated by five classes a2, b2, c3, d4 and em, where
subscripts denote dimension of the corresponding element and we omit
them from now on, subject only to the relations:

1. 2a = 2b = 2c = 4d = 0;

2. b2 = ab;

3. c2 = ad;

4.
∑(

i+j
j

)
aibdj =

{
2d

t+1
2 , t odd,

0, t even,
where the sum runs over i, j ≥ 0

with i+ 2j = t;

5.
∑(

i+j
j

)
ai+1dj = 0, where the sum runs over i, j ≥ 0 with i+2j =

t;

6.
∑(

i+j
j

)
aicdj = 0, where the sum runs over i, j ≥ 0 with i+ 2j =

t;

7.
∑(

i+j
j

)
aibdj =

{
2d

t+2
2 , t even,

0, t odd,
where the sum runs over i, j ≥ 0

with i+ 2j = t+ 1;

8.
∑(

i+j
j

)
ai+1dj = 0, where the sum runs over i, j ≥ 0 with i+2j =

t+ 1;
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9.
∑(

i+j
j

)
aicdj = 0, where the sum runs over i, j ≥ 0 with i+ 2j =

t+ 1;

10. dt+1 = 0;

11. (a) e2 = 0,

(b) µe = κbκcdl,

(c) ce = ηdl+1,

(d) and de =
∑l

i=1

(
t−i
i−1
)
at−2ibcdi.

Here µ ∈ {a, b}, t = 2l+κ with κ ∈ {0, 1} and η = b, if κ = 1
whereas η = 2 if κ = 0, except perhaps for m = 5.

Note that this description is presented slightly more explicit than
the one given in [7]. The key point is the proof of next lemma, where
we use the above algebraic structures in order to obtain the height of a
certain relevant element.

Lemma 4.4. Consider the element b ∈ H2(B(RPm, 2);Z) coming from
previous theorems. If k is the smallest positive integer such that bk = 0 :
Suppose m = 2e. Then

k = 2e.

On the other hand, let m ∈ {2e + 1, . . . , 2e+1 − 1}. Then

k = 2e + 1.

Proof. First suppose m = 2e+1; from 4) and 7) in Theorem 4.3 we have

(4) atb =

(
t− 1

1

)
at−2bd+

(
t− 2

2

)
at−4bd2 + · · ·

and

(5) at−1bd =

(
t− 2

1

)
at−3bd2 +

(
t− 3

2

)
at−5bd3 + · · ·+ 2d

t+2
2 .

Note that, in this case, t = 2e−1, then using the formula(
2e−1 − k
k − 1

)
≡ 0 mod 2 ∀ k

it follows that

(6) at−1bd = 2d
t+2
2 and therefore atbd = 0.
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Multiplying (4) by at−1 and using (6) we get

(7) b2
e

= bm−1 = b2t = a2t−1b = at−1bdt/2 = 2d
2t+2

2 dt/2−1 = 2dt 6= 0.

From dimensional conditions in Theorem 4.3, it is obvious that b2e+1 =
0, therefore the proof is complete for this case. Note that this is all what
we need to prove Theorem 4.4.

If we consider the case m = 2e+1 − 1, then t = 2e − 1, and from 4)
in 4.3 we get

(8) atb =

(
t− 1

1

)
at−2bd+

(
t− 2

2

)
at−4bd2 + · · ·+ 2d

t+1
2

and from here applying(
2e − k
k − 1

)
≡ 0 mod 2 ∀ k

we get

(9) b2
e

= bt+1 = atb = 2d
t+1
2 6= 0 and

b2
e+1 = bt+2 = at+1b = aatb = 2ad

t+1
2 = 0.

It is not difficult to analyze the case m = 2e in a similar manner,
but this time using 4.2, the rest of the cases now follow from these three
cases and an inductive argument.

Now, suppose there exists an antisymmetric map f : F (RP r−1, 2)→
Sn−1, passing to the orbit spaces we have the following diagram

(10) F (RP r−1, 2)
f //

��

Sn−1

��
B(RP r−1, 2)

P (f) // Pn−1.

The generator z in the second cohomology group of RPn−1 corresponds
to the element b2 appearing in 4.4 under P (f)∗, this fact is proved in [7]
using group actions on the Stiefel manifold Vr,2, as is described next.

Consider the dihedral group of order 8

(11) D8 = {t, y|t4 = y2 = 1, yt = t3y}.
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D8 acts freely on the Stiefel manifold Vm,2 ⊂ Rm × Rm as (v1, v2)t =
(v2,−v1), (v1, v2)y = (v1,−v2).

Let H denote the subgroup of D8 generated by y, yt2. It is not
difficult to prove that H ∼= Z2 × Z2. If we restrict the action of D8

to H on Vm,2, then the orbit space Vm,2

H , has the homotopy type of
F (RPm−1, 2), and the same assertion olds for Vm,2

D8
in comparison to

B(RPm−1, 2). To prove this for B(RPm−1, 2), just consider the map
g : Vm,2 → B(RPm−1, 2) given by g(v1, v2) = ([v1], [v2]). This map
clearly passes to the quotient and gives a map Vm,2

D8
→ B(RPm−1, 2).

The homotopy inverse is provided by Gram-Schmidt orthogonalization
process, applied to generators of a pair of different lines in Rm. Every-
thing is well defined and works right due to identifications on the orbit
space, and the argument is similar for F (RPm−1, 2). In particular this
gives a homotopy type fibration

(12) Vm,2 → B(RPm−1, 2)→ BD8,

where BD8 is the classifying space of D8.

The exact sequence of groups

1→ Z2 × Z2
∼= H → D8 →

D8

H
∼= Z2 → 1,

(12), and the double covering fibration

F (RPm−1)→ B(RPm−1, 2)→ RP∞

where used to prove that, in Diagram (10), P (f)∗(z) = b. Then a con-
tradiction argument and 4.4, prove the following:

Theorem 4.5.
2e+1 < Ias(RP 2e+1).

Proof. Suppose there exists an antisymmetric map f : F (RP 2e+1, 2)→
RP 2e+1−1, then from previous paragraph P (f)∗(z) = b but z2e = 0 while
from 4.4 b2e 6= 0.

E. Rees proved in [23] that Ias(RP 6) ≤ 9. Due to the fact Ias(RP k) ≤
Ias(RP k+1) for all k, we deduce:

Corollary 4.6.
Ias(RP 5) = Ias(RP 6) = 9.
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It should be remarked that RP 6 is the first real projective space for
which, to our knowledge, it is not known whether antisymmetric index
coincides to embedding dimension.

As we mentioned, it is not possible to know from non-immersion
results if the cases m = 3, 5 are in the range of Haefliger’s theorem
2.1; they really were obtained and proven to be in the cited range by
calculating the integral cohomology of symmetric reduced product of
projective spaces in the corresponding dimensions. Due to Equation (2)
and Theorem 2.4, the antisymmetric index non-existence point of view
can be considered as the method used to obtain a general statement
which can be viewed like a straight way to recover Theorem 3.9, part of
3.8, and the corresponding result on real symmetric non singular bilinear
maps. It is stated as

Theorem 4.7.

1. E(2e + 1) = TCS(RP 2e+1) = Ias(RP 2e+1) = 2e+1 + 1.

2. N(2e + 2) = 2e+1 + 2.

Proof. Theorem 4.5 gives 2e+1 + 1 ≤ Ias(RP 2e+1), which implies

2e+1 + 1 ≤ Ias(RP 2e+1) ≤ E(2e + 1) ≤ N(2e + 2)− 1 ≤ 2e+1 + 1

in view of (2) and Theorem 2.4.
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