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Baker-Gross theorem revisited

José Juan-Zacaŕıas

Abstract

F. Gross conjectured that any meromorphic solution of the Fer-
mat Cubic F3 : x3 + y3 = 1 are elliptic functions composed with
entire functions. The conjecture was solved affirmatively first by
I. N. Baker who found explicit formulas of those elliptic functions
and later F. Gross gave another proof proving that in fact one of
them uniformize the Fermat cubic. In this paper we give an alter-
native proof of the Baker and Gross theorems. With our method
we obtain other analogous formulas. Some remarks on Fermat
curves of higher degree is given.
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Introduction

Consider the Fermat cubic

(1) F3 : x3 + y3 = 1.

This algebraic curve defines an elliptic curve, i.e., a compact Riemann
surface of genus 1 (taking the zeros in CP2 of its homogenization). A
meromorphic solution of this equation is, by definition, a pair of mero-
morphic functions in the plane such that f3 + g3 = 1. In his paper [2]
F. Gross conjectures that any meromorphic solution of the Fermat cubic
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is obtained by composing elliptic functions with entire functions. The
conjecture was solved affirmatively by I. N. Baker in [4]. He proved that
any solution is the composition of the following elliptic functions with
an entire function:
(2)

f(z) =
1

2℘(z)

(
1− 3−1/2℘′(z)

)
, g(z) =

1

2℘(z)

(
1 + 3−1/2℘′(z)

)
,

where ℘ is the Weierstrass elliptic function satisfying (℘′)2 = 4℘3 − 1.
In what follows we denote by Λ′ the lattice in C that defines this ℘. In
particular these functions are solutions of the Fermat cubic but these
formulas differ from the analogous that appear in [2], [3], which seem to
contain an error. Later, F. Gross gave another proof in [5], proving in
fact that the function f in (2) gives a uniformization of the Fermat cubic
(1). In our context we formulate the previous results in the following
theorem:

Theorem (Baker-Gross). Let Λ′ and ℘ be as above. Then the map
C/Λ′ → F3 given in affine coordinates by

(3) z 7→
(

1

2℘(z)

(
1− 3−1/2℘′(z)

)
,

1

2℘(z)

(
1 + 3−1/2℘′(z)

))
is a biholomorphism between the two elliptic curves. Then by the lift-
ing property of coverings, any pair of functions F and G, which are
meromorphic in the plane and satisfy (1) have the form:

(4) F =
1

2℘(α)

(
1− 3−1/2℘′(α)

)
, G =

1

2℘(α)

(
1 + 3−1/2℘′(α)

)
,

where α is an entire function.

In this paper we give a proof of this theorem by using Riemann
surface theory and by using an explicit map from a Weierstrass normal
form to the Fermat cubic. Our proof could clarify the nature of the
previous formulas, which are not obvious. Also, by this method, other
formulas analogous to (3) and (4) are obtained (see (13) and (17)).

In Section 1 we recall some basic facts about elliptic curves and
compute a Weierstrass normal form of the Fermat cubic, and the cor-
responding isomorphism as well. In the next section we prove the main
theorem. Finally, in the last section we give some remarks on Fermat
curves of higher degree.

Recently, N. Steinmetz communicated to the author another proof
of the Gross conjecture in [7] (§2.3.5 pp. 56-57) by using Nevanlinna
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theory. He proved without reference to the Uniformization Theorem the
following:

Theorem (Steinmetz). Suppose that non-constant meromorphic func-
tions f and g parametrize the algebraic curve

F : xn + ym = 1 (n ≥ m ≥ 2)

with 1
m + 1

n < 1. Then (m,n) equals (4, 2) or (3, 3) or (3, 2). In any
case f and g are given by

f = E ◦ ψ and g =
m−1
√
E′ ◦ ψ,

where E is an elliptic function satisfying

E′2 = 1− E4, E′3 = (1− E3)2 and E′2 = 1− E3,

respectively, and ψ is any non-constant entire function.

1 The normal form of the Fermat cubic

1.1 Basic facts on elliptic curves

A complex elliptic curve X is by definition a compact Riemann surface
of genus 1. The Plücker formula tells us that a non-singular projective
curve of degree 3 in CP2 is a Riemann surface of genus 1 i.e., an elliptic
curve. The reciprocal is also true and we will briefly discuss it. For this,
we recall the uniformization theorem and the Weierstrass normal form.

The Uniformization Theorem says that every simply connected Rie-
mann surface is conformally equivalent to one of the three Riemann
surfaces: the Riemann sphere C, the complex plane C, or the open unit
disk ∆. This theorem combined with the theory of covering spaces give
us a classification of Riemann surfaces: every Riemann surface X is
conformally equivalent to a quotient X̃/G, where X̃ is the universal
holomorphic cover of X (hence isomorphic to one of the three previous
Riemann surfaces) and G is a subgroup of holomorphic automorphisms
of X̃ which acts on X̃ free and properly discontinuously. In particular,
when the Riemann surface is of genus 1, it has the complex plane as its
universal holomorphic cover, then X is conformally equivalent to C/Λ,
for some lattice Λ ⊂ C. For an introduction to Riemann surfaces and a
proof of the uniformization theorem see [1].
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The homogeneous polynomial with complex coefficients

(5) Y 2Z − 4X3 + g2XZ
2 + g3Z

3,

obtained by homogenization of the polynomial

(6) y2 = 4x3 − g2x− g3,

defines an non-singular curve if and only if the discriminant ∆ = g3
2 −

27g2
3 does not vanish. Hence, (5) defines an elliptic curve if and only if

∆ 6= 0. We call a Weierstrass normal form of an elliptic curve X an
elliptic curve given by an equation of the form (5) which is isomorphic
as a Riemann surface to X.

Recall also that given a lattice Λ ⊂ C we can associate the Weier-
strass elliptic function ℘ or ℘Λ given by the series:

(7) ℘(z) =
1

z2
+
∑
ω∈Λ∗

(
1

(z + ω)2
− 1

ω2

)
.

This function satisfies the differential equation

(8) (℘′)2 = 4℘3 − g2℘− g3,

where g2 and g3 are constants depending on Λ given by:

g2 = 60
∑
ω∈Λ∗

1

ω4
, g3 = 140

∑
ω∈Λ∗

1

ω6
,

satisfying ∆ = g3
2 − 27g2

3 6= 0. Thus this function gives us a map
Ψ: C/Λ→ E, in affine coordinates given by:

(9) Ψ(z) = (℘(z), ℘′(z)),

from C/Λ to the elliptic curve E : y2 = 4x3 − g2x− g3. This map is an
biholomorphism which sends Λ to the point at infinity [0 : 1 : 0].

From the previous results and the Uniformization Theorem we can
conclude that every elliptic curve has a Weierstrass normal form. Also,
it is true that given a non-singular equation (6), there exists a lattice Λ
with the same constants g2 and g3. For more information, refer to [6,
p. 176].
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1.2 Computing the Weierstrass normal form of the Fer-
mat cubic

Although a Weierstrass normal form is in general difficult to compute
starting from an abstract Riemann surface of genus 1, the case of the
Fermat cubic is relatively easy by choosing suitable changes of variables.
Since this process will be applied to other Fermat curves in Section 3,
we describe it step-by-step below:

1. Change (x, y) to (x−y, x+y) in order to eliminate the cubic term
y3. Obtaining:

E1 : 2x3 + 6xy2 = 1.

2. Change (x, y) to (1/x, y/x) to get:

E2 : 2 + 6y2 = x3.

3. At this point, we could use any change of variables for which the
coefficient of y2 is 1 and the coefficient of x3 is 4, for instance with
(x, y/

√
24) we obtain the case g2 = 0 and g3 = 8:

E3 : y2 = 4x3 − 8.

Observe that we obtain a map from the curve obtained in the change
of variable to the original curve. For example in step 1 we obtain E1 →
F3, (x, y) 7→ (x − y, x + y). Then, the maps associated to the previous
changes of variables are:

E3 → E2 E2 → E1 E1 → F3(10)

(x, y) 7→
(
x,

y√
24

)
, (x, y) 7→

(
1
x ,

y
x

)
, (x, y) 7→ (x− y, x+ y).

The inverse maps are (in the reverse order, respectively):

F3 → E1 E1 → E2 E2 → E3(11)

(x, y) 7→
(
y + x

2
,
y − x

2

)
, (x, y) 7→

(
1
x ,

y
x

)
, (x, y)→ (x,

√
24y).

So in each step we have a birrational isomorphism between these
non-singular algebraic curves, hence a biholomorphism between their
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Riemann surfaces. So we obtain, composing the maps of (11) and (10),
respectively, the biholomorphisms Φ: F3 → E3 and Φ−1 : E3 → F3:

Φ(x, y) =

(
2

y + x
,
√

24
y − x
y + x

)
,(12)

Φ−1(x, y) =

(
1

x
− y√

24x
,

1

x
+

y√
24x

)
.

2 Proof of the Baker-Gross theorem

From the previous explicit formulas the Baker-Gross theorem follows
easily. Consider Λ associated to g2 = 0 and g3 = 8 and consider the
biholomorphism Ψ : C/Λ → E3 defined in (9), then the composition
Φ−1 ◦Ψ: C/Λ→ F3 is a biholomorphism,

(13) Φ−1 ◦Ψ(z) =

(
1

℘(z)
− 1√

24

℘′(z)

℘(z)
,

1

℘(z)
+

1√
24

℘′(z)

℘(z)

)
.

where ℘ satisfies (℘′)2 = 4℘3 − 8.

If we continue from step 3 applying the change of variables (2x,
√

23y)
we obtain the curve E′3 : y2 = 4x3−1 and the map Φ = Φ−1(2x,

√
23y) :

E′3 → F3

Φ(x, y) = Φ−1(2x,
√

23y)(14)

=

(
1

2x
−
√

23y

2
√

24x
,

1

2x
+

√
23y

2
√

24x

)

=

(
1

2x

(
1− y√

3x

)
,

1

2x

(
1 +

y√
3x

))
,

and taking Λ′ associated to g2 = 0 and g3 = 1, and Ψ′ : C/Λ′ → E′3
as (9), composing this two isomorphism we obtain the biholomorphism
expected in (3) Φ ◦Ψ′ : C/Λ′ → F3:

Φ ◦Ψ′(z) =

(
1

2℘(z)

(
1− 3−1/2℘′(z)

)
,

1

2℘(z)

(
1 + 3−1/2℘′(z)

))
,

where the Weierstrass elliptic function ℘ satisfies here (℘′)2 = 4℘3 − 1.

On the other hand, let π : C→ C/Λ′ be the natural projection, this
map is an unbranched holomorphic covering, then the map Φ ◦ Ψ′ ◦
π : C → F3 is an unbranched holomorphic covering as well. Hence,
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given F and G a meromorphic solution of the Fermat cubic, the map
φ(z) = (F (z), G(z)) defines a holomorphic map φ : C → F3. Since C is
simply connected φ has an holomorphic lifting α : C → C with respect
to this covering, i.e., the following diagram commutes:

(15) C

Φ◦Ψ′◦π
��

C

α

>>

φ // F3

Composing with α we obtain

(16) F =
1

2℘(α)

(
1− 3−1/2℘′(α)

)
, G =

1

2℘(α)

(
1 + 3−1/2℘′(α)

)
,

which are the desired formulas. This proves the theorem.
Note that we could use the map Φ−1 ◦ Ψ: C/Λ → F3 given in (13)

instead of Φ◦Ψ′ in the above argument to obtain that any meromorphic
solution of the Fermat cubic is of the form

(17) F =
1

℘(α)

(
1− 1√

24
℘′(α)

)
, G =

1

℘(α)

(
1 +

1√
24
℘′(α)

)
,

where in this case ℘ satisfies (℘′)2 = 4℘3 − 8. We could obtain similar
solutions depending on which factor we choose in step 3, but we can
always obtain one from the other by this process.

3 Some remarks for Fermat curves of higher
degree.

We finalize discussing about the application of the changes of variables
described in 1.2 to the Fermat curves of higher degrees (see (18)). When
the curve is of odd degree the process give us directly an interesting
equation, but when the degree is even we need to apply a slight modifi-
cation in step 1. From these equations we give a meromorphic function
on the Fermat curves.

3.1 The odd case

The changes of variables in steps 1 and 2 described in 1.2 can be applied
to any Fermat curve,

(18) Fn : xn + yn = 1,
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but in the case of n odd we get an interesting formula. By a straight-
forward calculation, following steps 1 and 2, we find the curve E2:

(19) E2 : 2 + 2

n−1
2∑

k=1

(
n

2k

)
y2k = xn.

As we did not modify the above steps we get the same correspon-
dence Φ: Fn → E2 as in (12) but without step 3, so we get in this
case:

Φ(x, y) =

(
2

y + x
,
y − x
y + x

)
,(20)

Φ−1(x, y) =

(
1

x
− y

x
,

1

x
+
y

x

)
.

Note that E2 has an holomorphic involution I(x, y) = (x,−y). It is
easy to check that it is conjugate by Φ to the canonical involution of
Fn, I(x, y) = (y, x), i.e., the following diagram commutes

(21) F3

Φ
��

I // F3

Φ
��

E2
I // E2

Note that the projection in the first coordinate is a meromorphic
function of degree n − 1 on E2, so composing with Φ we obtain the
meromorphic function 2/(y + x) on Fn of degree n − 1, for example
in the case n = 3 we obtain a degree 2 meromorphic function on the
elliptic curve F3.

3.2 The even case

Similar formulas can be obtained in the even case by using the change
(x+ωy, x+y) instead of (x−y, x+y) in the first step, where ω is a root
of xn = −1, maintaining the other steps without changes as before. In
this case we have

(22) E2 : 2 +

n−1∑
k=1

(
n

k

)
(1 + ωk)yk = xn,
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and Φ : Fn → E2 become

Φ(x, y) =

(
ω − 1

ωy − x
,
x− y
ωy − x

)
,(23)

Φ−1(x, y) =

(
1

x
+ ω

y

x
,

1

x
+
y

x

)
.

Similarly as above, the map (ω − 1)/(ωy − x) is an meromorphic
map of degree n− 1 on the Fermat curve Fn, for n even.
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