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A Brief History of Persistence ∗

Jose A. Perea 1

Abstract

Persistent homology is currently one of the more widely known
tools from computational topology and topological data analysis.
We present in this note a brief survey of how the subject has
evolved over the last few years.
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1 The Early Years: Computer Science Meets
Geometry, Algebra and Topology

Our current view of persistent homology can be traced back to work
of Patrizio Frosini (1992) on size functions [29], and of Vanessa Robins
(1999) [44] on using experimental data to infer the topology of attrac-
tors in dynamical systems. Both approaches rely on singular homology
as a shape descriptor, which leads to what is known today as the “ho-
mology inference problem”: Given a finite set X (the data) sampled
from/around a topological space X (e.g., the attractor), how can one
infer the homology of X from X with high confidence? See for instance
[41] for the case when X is a compact Riemannian submanifold of Eu-
clidean space, and X ⊂ X is sampled according to the intrinsic uniform
distribution. From here on out it will be useful to think of X and X
as subspaces of a bounded metric space (M, ρ). In this case, one can
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formalize the statement “X approximates X” by saying that if Z ⊂M,
ε ≥ 0, and Z(ε) := {x ∈M : ρ(x, Z) ≤ ε}, then the Hausdorff distance

dH(X,X) := inf
{
ε > 0 : X ⊂ X(ε) and X ⊂ X(ε)

}
is small. The goal is then to approximate the topology of X by that of
X(ε). Below in Figure 1 we illustrate the evolution of X(ε) as ε increases.

Figure 1: Some examples of X(ε) for X ⊂ R2 sampled around the unit
circle, and ε values 0 < ε1 < ε2 < ε3.

In order to capture the multiscale nature of X = {X(ε)}ε, and deal
with the instability of topological features in X(ε) as ε changes, Frosini
and Robins introduced (independently) the idea of homological persis-
tence: for ε, δ ≥ 0 let

ιε,δ : X(ε) ↪→ X(ε+δ)

be the inclusion, and consider the induced linear map in homology with
coefficients in a field F

ιε,δ∗ : Hn

(
X(ε);F

)
−→ Hn

(
X(ε+δ);F

)
The image of ιε,δ∗ is the δ-persistent n-th homology group of the filtered
space X at ε, denoted Hε,δ

n (X ;F); and

rank
(
ιε,δ∗

)
is the persistent Betti number βε,δn (X ;F).

The design of algorithms to efficiently compute/approximate these
integers is of course predicated on first replacing the spaces X(ε) by
finite, combinatorial models of their topology. Fortunately there is a
vast literature on how to do this. Take for instance the Vietoris-Rips
complex, first introduced by Leopold Vietoris in the nineteen-twenties



A Brief History of Persitence 3

in an attempt to define a homology theory for general metric spaces [47].
It is defined, for Z ⊂M and ε ≥ 0, as the abstract simplicial complex

Rε(Z) :=
{
{z0, . . . , zk} ⊂ Z : ρ(zi, zj) ≤ ε for all 0 ≤ i, j ≤ k

}
Below in Figure 2 we show an example of how Rε(Z) evolves as ε in-
creases, for Z ⊂ R2 sampled around the unit circle, and for ε values
0 < ε1 < ε2 < ε3.

Figure 2: Some examples of the Rips complex, for points sampled
around the unit circle in R2.

Notice that Rε(Z) ⊂ Rε+δ(Z) whenever δ ≥ 0; in other words,
R(Z) = {Rε(Z)}ε is a filtered simplicial complex. Janko Latschev shows
in [35] that when X is a closed Riemannian manifold, there is an ε0 > 0,
so that if 0 < ε ≤ ε0, then there exists δ > 0 for which dH(X,X) < δ
implies that the geometric realization of Rε(X) is homotopy equivalent
to X. Discarding the manifold hypothesis — which is not expected to
hold in general applications — highlights the value of persistence as a
homology inference tool. Indeed, in [17] Chazal, Oudot and Yan show
that if X ⊂ Rd is compact with positive weak feature size2 [16], and
X ⊂ Rd is finite with dH(X,X) small, then there exists a range for
ε > 0 where Hε,3ε

n (R(X);F) is isomorphic to Hn

(
X(ε);F

)
. It is worth

noting that while these theorems deal with small ε, far less is known
about the large-scale regime. Indeed, aside from trivial examples, the
circle is (essentially) the only space Z for which the homotopy type of
Rε(Z) is known explicitly for all ε > 0 [1, 2].

The efficient computation of the persistent Betti numbers of a finite
filtered simplicial complex

K = {K0 ⊂ K1 ⊂ · · · ⊂ KJ = K},

was addressed by Edelsbrunner, Letscher and Zomorodian in (2000)
[27], for subcomplexes of a triangulated 3-sphere and homology with
coefficients in F2 = {−1, 1}. This restriction was a tradeoff between

2this is a notion of how complex the embedding of X into Euclidean space is.
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generality and speed: the algorithm was based on previous work of
Delfinado and Edelsbrunner [22] to compute (standard) Betti numbers
incrementally in time O(Nα(N)), where N is the number of simplices
of K and α is the inverse of the Ackermann function [19]. Since the
Ackermann function grows very rapidly, its inverse α grows very slowly.
Though limited in generality, the approach by Delfinado and Edelsbrun-
ner highlights the following idea: If Kj is obtained from Kj−1 by adding
a single simplex τ ∈ K, and

Hn(Kj−1;F) −→ Hn(Kj ;F)

is not surjective, then either τ is an n-simplex creating a new homology
class, or it is an n + 1-simplex eliminating a class from Kj−1. Thus,
simplices in K that either create or annihilate a given persistent ho-
mology class can be put in pairs (τ, σ) of the form creator-annihilator.
These pairings are in fact a byproduct of the incremental algorithm of
Delfinado and Edelsburnner. The barcode is also introduced in [27] as
a visualization tool for persistence: each pair (τ, σ) yields an interval
[j, `), where j (birth time) is the smallest index so that τ ∈ Kj , and
` > j (death time) is the smallest index for which σ ∈ K`. Thus, long
intervals indicate stable homological features throughout K, while short
ones reflect topological noise. The resulting multiset of intervals (as
repetitions are allowed) is called a barcode. The notation is bcdn(K).
Moreover, the barcode subsumes the persistent Betti numbers, since
βε,δn (K;F) is the number of intervals [j, `) ∈ bcdn(K) with j ≤ ε and
` > ε+ δ. Below in Figure 3 we show an example of a filtered simplicial
complex, the simplicial pairings (τ, σ), and the resulting barcodes.

2 Here Comes the Algebra

The developments up to this point can be thought of as the computa-
tional and geometric era of persistent homology. Around 2005 the focus
started to shift towards algebra. Zomorodian and Carlsson introduced
in [50] the persistent homology

PHn(K;F) :=
⊕
j∈Z

Hn(Kj ;F) , K = {Kj}j∈Z

of a filtered complex K, as the graded module over F[t] with left multi-
plication by t on j-homogeneous elements given by the linear map

φj : Hn(Kj ;F) −→ Hn(Kj+1;F)
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Figure 3: A filtered simplicial complex K = {K0 ⊂ · · · ⊂ K8}, along
with the simplicial pairings (τ, σ), and the resulting barcodes for homol-
ogy in dimensions 0 (orange) and 1 (green).

induced by the inclusion Kj ↪→ Kj+1. Since then, PHn(K;F) is referred
to in the literature as a persistence module. More generally [6, 7], let
J and C be categories with J small (i.e., so that its objects form a
set). The category of J-indexed persistence objects in C is defined as
the functor category Fun(J,C); its objects are functors F : J → C, and
its morphisms are natural transformations ϕ : F1 ⇒ F2. The typical
indexing category comes from having a partially ordered set (P,�), and
letting P denote the category with objects Obj(P ) = P , and a unique
morphism from p1 to p2 whenever p1 � p2. We’ll abuse notation and
denote this morphism by p1 � p2, instead of the categorical notation
p1 → p2.

It can be readily checked that if ModR denotes the category of (left)
modules over a commutative ring R with unity, and gModR[t] is the
category of Z-graded modules over the polynomial ring R[t], then

(1)

Fun(Z,ModR) −→ gModR[t]

M , ϕ 7→
⊕
j∈Z

M(j) ,
⊕
j∈Z

ϕj

is an equivalence of categories. On the graded R[t]-module side, mul-
tiplication by t on j-homogeneous elements is given by M(j ≤ j + 1) :
M(j) −→M(j + 1). This equivalence shows why/how the evolution of
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homological features in a Z-filtered complex K, can be encoded as the
algebraic structure of the persistence module PHn(K;F).

2.1 Persistence Modules and Barcodes

When PHn(K;F) is finitely generated as an F[t]-module — e.g. if Kj =
∅ for j < 0 and

⋃
j∈Z

Kj is finite — then one has a graded isomorphism

(2) PHn(K;F) ∼=

 Q⊕
q=1

tnq · F[t]

⊕( L⊕
`=1

(tm` · F[t]) /(tm`+d`)

)

for nq,m` ∈ Z and d` ∈ N [48]. The decomposition (2) is unique up to
permutations, and thus the intervals

[n1,∞), [n2,∞), . . . ,[nQ,∞),

[m1,m1 + d1), [m2,m2 + d2), . . . , [mL,mL + dL)

provide a complete discrete invariant for (i.e., they uniquely determine)
the F[t]-isomorphism type of PHn(K;F). Moreover, this multiset re-
covers the barcode bcdn(K) of Edelsbrunner, Letscher and Zomorodian
[27].

Carlsson and Zomorodian also observe that PHn(K;F) is in fact
the homology of an appropriate chain complex of graded F[t]-modules.
Hence, a graded version of the Smith Normal Form [24] computes the
barcode decomposition (2), providing a general-purpose algorithm. This
opened the flood gates; barcodes could now be computed as a linear
algebra problem for any finite filtered simplicial complex K0 ⊂ · · · ⊂
KJ = K, over any (in practice finite) field of coefficients, and up to
any homological dimension. The resulting matrix reduction algorithm,
implemented initially in the JPlex library (now javaPlex) [3], runs in
polynomial time: its worst time complexity is O(N3), where N is the
number of simplices of K. In fact Dmitriy Morozov exhibits in [40] a
finite filtered complex of dimension 2, attaining the worst-case. This
shows that the cubic bound is tight for general barcode computations.

While this sounds potentially slow, specially compared to the time
complexity O(N · α(N)) of the sequential algorithm, Morozov’s exam-
ple should be contrasted with filtrations arising from applications. In
practice the matrices to be reduced are sparse, and computing their
associated barcode decomposition takes at worst matrix-multiplication
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time O(Nω) [38], where ω ≈ 2.373 [49]. Over the last ten years or so
there has been a flurry of activity towards better implementations and
faster persistent homology computations. A recent survey [42] compares
several leading open source libraries for computing persistent homology.
All of them implement different optimizations, exploit new theoreti-
cal developments and novel heuristics/approximations. For instance,
one improvement is to first simplify the input filtered complex with-
out changing its persistent homology (e.g., using discrete Morse theory
[39]); or to compute persistent cohomology, since it is more efficient
than persistent homology and gives the same answer [21].

The shift towards algebra has had other important consequences;
specifically: 1) a better understanding of stability for barcodes, and 2)
several theorems describing how the choice of categories J and C impacts
the computability of isomorphism invariants for objects in Fun(J,C). Let
me say a few words about stability.

2.2 The Stability of Persistence

Let X be a triangulable topological space (e.g., a smooth manifold) and
let f : X −→ R be a tame function (this is a generalization of being
Morse). The prototypical example in TDA arises from a compact set
X ⊂ Rd, and letting fX : Rd −→ R be

fX(y) = inf
x∈X
‖x− y‖.

Thus f−1X (−∞, ε] = X(ε). Given f : X −→ R, let bcdn(f) denote the
barcode for the n-th persistent homology of

{
f−1(−∞, ε]

}
ε∈R. Drawing

inspiration from Morse theory, Cohen-Steiner, Edelsbrunner and Harer
introduced in (2007) [18] two foundational ideas: (1) the bottleneck dis-
tance dB( · , · ) between barcodes, and (2) the stability theorem asserting
that for tame f, g : X −→ R one has that3

dB(bcdn(f), bcdn(g)) ≤ ‖f − g‖∞

In particular, if X,Y ⊂ Rd are compact and X =
{
X(ε)

}
ε
, Y =

{
Y (ε)

}
ε
,

then dB(bcdn(X ), bcdn(Y)) ≤ dH(X,Y ). This inequality implies that
slight changes to the input data change the barcodes slightly, which is
key for applications where (Hausdorff) noise plays a role.

3A similar result was established in [25] for n = 0.
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Towards the end of 2008 Chazal et. al. solidified the idea of stability
with the introduction of interleavings for R-indexed persistence modules
[13]. The construction is as follows. For δ ≥ 0 let Tδ : R −→ R be
the translation functor Tδ(ε) = ε + δ. An δ-interleaving between two
persistence vector spaces V,W : R −→ ModF is a pair (ϕ,ψ) of natural
transformations

ϕ : V ⇒W ◦ Tδ and ψ : W ⇒ V ◦ Tδ

so that ψε+δ ◦ ϕε = V (ε ≤ ε + 2δ) and ϕε+δ ◦ ψε = W (ε ≤ ε + 2δ)
for all ε ∈ R. The interleaving distance between V and W , denoted
dI(V,W ), is defined as the infimum over all δ ≥ 0 so that V and W
are δ-interleaved, if interleavings exist. If there are no interleavings,
the distance is defined as ∞. It readily follows that dI is an extended
(since infinity can be a value) pseudometric on Fun(R,ModF), and that
dI(V,W ) = 0 whenever V ∼= W . The converse, however, is false in
general (more on this later).

Chazal et. al. [13] show that if V : R −→ ModF satisfies rank
(
V (ε <

ε′)
)
< ∞ for all pairs ε < ε′, this is called being q-tame, then V

has a well-defined barcode bcd(V ) (see [20] for a shorter proof when
dimFV (ε) < ∞ for all ε; this is called being pointwise finite). More-
over, if V,W are q-tame, then one has the algebraic stability theorem
dB(bcd(V ), bcd(W )) ≤ dI(V,W ). This turns out to be an equality:

dB(bcd(V ), bcd(W )) = dI(V,W )

which nowadays is referred to as the Isometry Theorem; the first known
proof is due to Lesnick [36].

As I said earlier, dI(V,W ) can be zero for V and W nonisomorphic,
and thus bcd(V ) is not a complete invariant in the q-tame R-indexed
case. This can be remedied as follows. Let qFun(R,ModF) denote the
full subcategory of Fun(R,ModF) comprised of q-tame persistence mod-
ules. The ephemeral category eFun(R,ModF), is the full subcategory of
qFun(R,ModF) with objects V : R −→ ModF satisfying V (ε < ε′) = 0
for all ε < ε′. The observable category oFun(R,ModF) is the quotient
category

qFun(R,ModF)/eFun(R,ModF)

As shown by Chazal et. al. in [14], dI descends to an extended metric
on the observable category, and taking barcodes

bcd :
(
oFun(R,ModF), dI

)
−→

(
Bcd, dB

)
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is an isometry. Hence, the barcode is a complete invariant for the iso-
morphism type of observable R-indexed persistence vector spaces. In
summary, the modern view of stability is algebraic; persistence modules
are compared via interleavings, which one then tries to relate to the
bottleneck distance between the associated barcodes if they exist.

2.3 Changing Indexing Categories: Multi-d Persistence,
Quivers and Zigzags

One of the early realizations in TDA was the usefulness of having fil-
trations indexed by more than one parameter (1999) [30]. For instance,
given a data set X ⊂ Rd one might want to focus on densely-populated
regions [9], or portions with high/low curvature [12]. This leads nat-
urally to Zn-filtered complexes: {Ku}u∈Zn , u = (u1, . . . , un), where
Ku ⊂ Kv whenever u � v (i.e., u1 ≤ v1, . . . , un ≤ vn). In this multi-
filtered complex, each filtering direction u1, . . . , un is meant to capture
an attribute: e.g. distance/scale, density, curvature, etc. Taking homol-
ogy with coefficients in F yields objects in Fun(Zn,ModF), and just like
before, Zn-indexed persistence F-vector spaces correspond to n-graded
modules over the n-graded polynomial ring Pn := F[t1, . . . , tn]. Parame-
terizing the isomorphism classes of said modules, for n ≥ 2, turns out to
be much more involved than the barcodes from n = 1. Indeed, around
2009 Carlsson and Zomorodian [11] showed that the isomorphism type
of a finitely generated n-graded Pn-module is uniquely determined by
the following data: two finite multisets ξ0, ξ1 ⊂ Zn encoding the lo-
cation and multiplicity of birth-death events, and a point in the quo-
tient of an algebraic variety RF(ξ0, ξ1) by the algebraic action of an
algebraic group Gξ0 . The multisets ξ0, ξ1 are the discrete portions of
the resulting isomorphism invariant, while RF(ξ0, ξ1)/Gξ0 parameter-
izes the (potentially) continuous part. Here is an example due to Carls-
son and Zomorodian [11] illustrating how complicated this quotient can
be. For n = 2, consider the isomorphism classes of P2-modules hav-
ing ξ0 = {(0, 0), (0, 0)} and ξ1 = {(3, 0), (2, 1), (1, 2), (0, 3)}. If Gr1(F2)
denotes the Grassmannian of lines in F2, then

RF(ξ0, ξ1) = Gr1(F2)× Gr1(F2)× Gr1(F2)× Gr1(F2)

and Gξ0 turns out to be the degree 2 general linear group GL2(F) acting
diagonally on Gr1(F2)4. Since Gr1(F2)4/GL2(F) contains a copy of F r
{0, 1}, and each point in this set yields a distinct isomorphism class of
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P2-modules, it follows that there is no complete discrete invariant for
(finite!) multi-d persistence.

The vast majority of recent results from multidimensional persis-
tence focus on computable descriptors/visualizations of its intricate al-
gebraic structure. Besides introducing the parametrization

ξ0, ξ1,RF(ξ0, ξ1)/Gξ0 ,

Carlsson and Zomorodian also propose the rank invariant: For a q-tame
module V : Zn −→ ModF, it is defined as the function ρV sending each
pair u � v in Zn to the integer rankV (u � v). ρV is computable (see
[10] for a polynomial-time algorithm), it is discrete, and an invariant
of the isomorphism type of V . When n = 1 one can recover bcd(V )
from ρV and viceversa, and thus ρV is complete in the 1-dimensional
case. Knudson notes in [34] that ξ0(V ) and ξ1(V ) are in fact the loca-
tions/multiplicities of birth events in the torsion modules TorPn

0 (V,F)
and TorPn

1 (V,F), respectively; here F is identified with the Pn-module
F[t1, . . . , tn]/(t1, . . . , tn). The higher-dimensional analogs TorPn

j (V,F),
j ≥ 2, lead to a family of finite multisets ξj(V ) ⊂ Zn, each with its
own geometric interpretation, serving as isomorphism invariants for V .
Other approaches to invariants for multidimensional persistence include
the Hilbert Series of Harrington et. al. [33], the extended algebraic func-
tions of Skryzalin and Carlsson [46], and the feature counting invariant
of Scolamiero et. al. [45]. Lesnick and Wright have recently released
RIVET, the Rank Invariant Visualization and Exploration Tool [37].
Put simply, RIVET uses the fact that if V : R2 −→ ModF is q-tame
and L ⊂ R2 is a line with nonnegative slope (hence a totally ordered
subset of (R2,�)), then V L : L −→ ModF, the 1-dimensional persistence
vector space obtained by restricting V to L, has a well-defined barcode
bc
(
V L
)
. The key feature in RIVET is a graphical interface which, for

finite bi-filtrations, displays bc
(
V L
)

interactively as the user varies L.
This is particularly useful for parameter selection and the exploratory
analysis of data sets with filtering functions.

Multidimensional persistence is a great example of how a seemingly
innocuous change in indexing category, say from Z to Z2, can lead to
a widely different and much more complicated classification problem.
With this in mind, one would like to have a systematic approach to
address the ensuing complexity. The representation theory of Quivers
[23] offers one such avenue. It turns out that the classification of finite J-
indexed persistence vector spaces V : J −→ ModF can be studied directly
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from the shape of the indexing category J. Indeed, let G(J) be the finite
directed (multi)graph with the objects of J as vertices, and one arrow for
every morphism that is neither an identity nor a composition. Also, let
G̃(J) be the undirected graph obtained from G(J) by forgetting arrow
directions. When G̃(J) is acyclic, Gabriel’s theorem [31] implies that
pointwise finite objects in Fun(J,ModF) can be classified via complete
discrete invariants, if and only if the connected components of G̃(J) are
Dynkin diagrams of the types described in Figure 4 below.

Figure 4: Dynkin diagrams of type An for n ≥ 1, Dn for n ≥ 4, and En
for n = 6, 7, 8.

Here is an example of how this result can be used to avoid unpleasant
surprises: Suppose that G(J) is the graph with vertices x0, . . . , xN and
N ≥ 5 edges xn → x0, n = 1, . . . , N (see Examples 3 and 8 in [23]).
While the resulting J-indexed persistence vector spaces V : J −→ ModF
may look simple (just star-shaped, right?), the connected graph G̃(J)
is not a Dynkin diagram, and the ensuing classification problem is in
fact of “wild type”: complete invariants must include continuous high-
dimensional pieces, just like in multidimensional persistence.

These ideas entered the TDA lexicon around 2010 with the definition
of Zigzag persistence by Carlsson and de Silva [8]. Regular persistence
addresses the problem of identifying stable homological features in a
monotone system of spaces and continuous maps

X1 → X2 → · · · → XJ .

Zigzag persistence, on the other hand, is a generalization to the non-
monotone case. Here is a practical example: suppose one has an ordered
sequence of spaces X1, . . . , XJ (e.g., from time varying data), but no
obvious maps Xj → Xj+1. The need to track topological features as j
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varies leads one to consider the system

X1 ↪→ X1 ∪X2 ←↩ X2 ↪→ · · · ←↩ Xj ∪Xj+1 ↪→ · · · ←↩ XJ

and the resulting zigzag diagram

V1 → V2 ← V3 → · · · ← Vn

at the homology level. More generally, a (finite) zigzag is a sequence
of vector spaces V1, . . . , Vn and linear maps Vj → Vj+1 or Vj ← Vj+1.
The sequence of arrow directions, e.g. τ = (left, left, right, ..., right, left),
is the zigzag type. Since in this case any choice of τ forces the indexing
category Jτ to satisfy G̃(Jτ ) = An (one of the aforementioned Dynkin
diagrams), then Gabriel’s theorem implies that finite zigzags

V : Jτ −→ ModF

are completely classified by a discrete invariant. Just as for regular 1-
dimensional persistence the invariant turns out to be a barcode, which
can be efficiently computed [38], and for which there is a zigzag stability
theorem [5] recently established by Botnan and Lesnick.

When the graph G̃(J) has cycles, the functoriality of objects in
Fun(J,ModF) is captured by the notion of a quiver with relations. The
taxonomy from Gabriel’s theorem no longer applies, but one can still
find some answers in the representation theory of associative algebras.
A particularly important instance is when the cycles of G̃(J) are not
oriented cycles in G(J); in this case the algebras of interest are finite
dimensional (hence Artinian) and Auslander-Rieten theory [4] becomes
relevant. Escolar and Hiraoka [28] have recently put these ideas to use
in the context of persistent objects indexed by commutative ladders;
that is, the persistence of a morphism between two zigzags of the same
type:

• • • · · · • • •

• • • · · · • • •

The resulting theory sits somewhere between zigzag persistence and
multi-dimensional persistence: short ladders (length ≤ 4) have complete
discrete invariants, but longer ones do not. Escolar and Hiraoka present
an algorithm for computing these invariants, and also an interesting
application to computational chemistry.
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I think this is a good place for me to stop; hopefully it is also a good
starting point for the reader interested in persistent homology. There
are several books covering many of the ideas I presented here, as well as
many others. The interested reader would certainly benefit from these
resource [32, 15, 26, 43].
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