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Alternative to Euler’s formula for
∑∞

n=1
1
n2k with

k ∈ Z+ and for even indexed Bernoulli numbers
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Abstract

This paper proposes an alternative mechanism to get an orig-
inal result for the expression

∑∞
n=1

1
n2k , k ∈ Z+, the first related

result was obtained by Leonhard Euler in 1732; later, we will be
able to reproduce even indexed Bernoulli numbers from both re-
sults.
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1 Introduction

Euler’s formula, obtained for the first time in 1736, gives an answer for
the sum value

∑+∞
n=1

1
n2k , nowdays known as the Riemann Zeta Function

evaluated at even positive integers ζ(2k). It is interesting to note that
Euler’s formula has its origin in the Basilea problem, which consists
in finding the infinite sum of the reciprocals of the squares of positive
integers

∑+∞
n=1

1
n2 . The problem, raised to Leibniz by Oldenburg who

was secretary of the Royal Society in 1673, had been addressed years
ago byPietro Mengoli and byWallis. This problem was also addressed
by Jacob and Johan Bernoulli, who tried to attack it using triangular
numbers, but eventually realizing that such a path could not lead them
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to the correct answer. The problem obsessed Jacob Bernoulli to such
an extent that he ended up launching it as an open challenge. It should
be noted that he proved the non convergence of the harmonic series

(1) 1 +
1

2
+

1

3
+

1

4
+ · · · =∞.

There are works ([1]) where the proof of Euler’s formula is done by

applying probabilistic techniques. In [5] it is shown that
∑∞

n=1
1
n2 = π2

6
while in [3] a proof is given directly. Moreover, there are results as in
[4] where it is found through formulas which are proved by induction.
On the other hand, in [6] and [8], in addition to giving a short proof,
they also offer a general expression to calculate ζ(2k + 1).

This work is developed as follows: In the second section we start
by giving a synthesized explanation of how Euler came up with the
expression for ζ(2). The section closes by presenting the first general
expression for ζ(2k), which was obtained by Euler in 1748. In the third
section we develop our innovative proposal which involves Fourier series
and, with it, we obtain a new general formula to calculate ζ(2k). In the
fourth section we give an expression to find B2k.

2 Mechanism used by Euler to generate ζ(2)

By the year 1731, the prodigious Leonhard Euler, had already been able
to calculate the first 20 digits of the problem

(2) 1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · ·+ 1

10002
= 1.6439345666815598031

and of course, it goes without saying that at that time there were no
mechanical devices so sophisticated to make such enormous sums and
certainly much less calculators. In order to achieve this, he started from
the well known geometric series, already well established for that time

(3)
1

1− x
= 1 + x+ x2 + x3 + x4 + · · ·+ xk + · · ·

that converges as long as |x| < 1, which by integrating, can lead to

(4) − ln (1− x) = x+
x2

2
+
x3

3
+
x4

4
+ · · ·+ xk

k
+ · · ·
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then integrating the expression
∫ 1

2
0

ln (1−x)
x dx, and after careful integra-

tion by parts, Euler manages to come up with the famous expression

(5)

∞∑
n=1

1

n2k
=

∞∑
k=1

1

2k−1k2
+ [ln 2]2

to find the expression for ζ(2) (see [2]). Euler starts from the Taylor
series expansion of the function sin x, it is:

(6) sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)k−1

x2k−1

(2k − 1)
+ · · ·

then dividing by x(x 6= 0), we obtain

(7)
sinx

x
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · ·+ (−1)k−1

x2k−2

(2k − 1)
+ · · · .

Now, considering the change z = x2, we get

(8) 1− z

3!
+
z2

5!
− z3

7!
+ · · ·+ (−1)k−1

zk−1

(2k − 1)
+ · · · .

Since the roots of the sin x function are: ±π,±2π,±3π...,±nπ, then
the roots of the previous expression will be ±π2,±4π2,±9π2...,±n2π2,
it is,

(9)

1− z
3! + z2

5! −
z3

7! + · · ·+ (−1)k−1 zk−1

(2k−1) + · · ·

=
(

1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·
(

1− x2

n2π2

)
· · ·

and therefore, we will have that

(10)
sinx

x
=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·
(

1− x2

n2π2

)
· · · .

Equating the second coefficient of (9) with the corresponding quadratic
term in the previous expression, and after careful calculation, we obtain

(11)
1

3!
=

1

π2
+

1

4π2
+

1

9π2
+

1

16π2
+ · · ·+ 1

n2π2
+ · · · .

Equivalently,

(12)
1

3!
=

1

6
=

1

π2

[
1 +

1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
+ · · ·

]
,
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from where it is directly obtained

(13)
∞∑
n=1

1

n2
= ζ(2) =

π2

6
.

Due to some critiques he received (for example from Johan Bernoulli
in April 1737 where he points out some deficiencies about the proof
such as that the only roots of sinx

x = 0, were x = nπ, with n =
±1,±2,±3, . . .), Euler found other more convincing solutions about this
result to finally publish the generalization in his work Introductio in
analysin infinitorum in 1748. This was done through the expression

(14)

∞∑
n=1

1

n2k
= ζ(2k) =

(−1)k−1(2π)2kB2k

2(2k!)
,

where B2k corresponds to even indexed Bernoulli numbers.

3 Formula development

It is well known that Jean-Baptiste Joseph Fourier (1768 − 1830) who
publishes in 1822 his Theorie analytique de la chaleur (Analytical the-
ory of heat), a treatise in which he established the partial differential
equation that governs the diffusion of heat giving it a solution through
the use of infinite series of trigonometric functions, introduced the con-
cept that later will be called the Fourier expansion of analytic functions;
in fact, any analytic function f(x) defined on the interval [−L,L] can
be expressed as an infinite series expansion of functions of sines and
cosines

(15) f(x) =
a0
2

+

∞∑
n=1

[
an cos

(nπx
L

)
+ bnsin

(nπx
L

)]
with

(16)

a0 = 1
L

∫ L
−L f(x)dx

an = 1
L

∫ L
−L f(x) cos

(
nπx
L

)
dx

bn = 1
L

∫ L
−L f(x)sin

(
nπx
L

)
dx.
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It is clear that Fourier never imagined that the implications of his re-
sults would have a great impact on the development of engineering:
Communications, signal processing, and so on.

The functions that are built in the next section fulfill the conditions
that guarantee uniform convergence in the compact. They fulfill the
conditions indicated in the following theorems.

Theorem. Let f be a continuous function on the interval −L ≤ x ≤ L,
such that f(−L) = f(L) and whose derivative f ′ is quasi-continuous in
that interval. Then the series

∞∑
n=1

√
a2n + b2n

converges, with an and bn being the Fourier coefficients.

Proof. Can be found in [9]. �

Theorem. Under the conditions stated in the previous theorem, the
convergence of the Fourier series

a0
2

+
∞∑
n=1

[
an cos

(nπx
L

)
+ bnsin

(nπx
L

)]
to f(x) in the interval −L ≤ x ≤ L is absolute and uniform with respect
to x in this interval.

Proof. Can be found in [9]. �

3.1 Obtaining the Formula for ζ(2k)

Let us consider the Fourier series expansion of the function f(x) = x2

defined on the interval [−2, 2]; after some direct calculations, we obtain
the expression:

(17)
f2(x) = x2 = 4

3 + 16
π2

∑∞
n=1

(−1)n cos(nπx2 )
n2

= C2 + 16
π2

∑∞
n=1

(−1)n cos(nπx2 )
n2
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where

(18)

C2 = a0
2 = 4

3

an = (−1)n16
π2n2 , ∀ n ∈ Z+;

bn = 0, ∀ n ∈ Z+

Substituting in the previous expression x = 2 or x = −2, we get

22 =
4

3
+

16

π2

∞∑
n=1

(−1)n cos(nπ)

n2
=

4

3
+

16

π2

∞∑
n=1

(−1)2n

n2

(19) =
4

3
+

16

π2

∞∑
n=1

1

n2

Given that cos(nπ) = cos(−nπ) = (−1)n, it can be written as

(20) 22 =
4

3
+

16

π2

∞∑
n=1

1

n2

when isolating
∑∞

n=1
1
n2 , we obtain

(21) ζ(2) =
∞∑
n=1

1

n2
=
π2

6
.

This corresponds to Leonhard Euler’s famous formula that he obtained
in 1734 and whose solution was analyzed in the previous section.

Substituting x = 0 in (17) we get another important series, namely,

(22)
∞∑
n=1

(−1)n

n2
= −π

2

12
.

From the expression (17), we have

(23) f2(x)− C2 = x2 − 4

3
=

16

π2

∞∑
n=1

(−1)n cos
(
nπx
2

)
n2

.
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Clearly the function is integrable. Let’s define

(24)

f3(x) =
∫ x
0 (f2(x)− C2)dx = x3

3 −
4x
3

=
∫ x
0

16
π2

∑∞
n=1

(−1)n cos(nπx2 )
n2

= 32
π3

∑∞
n=1

(−1)n(sin(nπx2 )−sin(nπ02 ))
n3

= 32
π3

∑∞
n=1

(−1)nsin(nπx2 )
n3 + C3.

The above expression coincides with the Fourier series expansion of
the polynomial f3(x) = x3

3 −
4x
3 on the interval [−2, 2], in this case we

have that C3 is integration constant and it is equal to zero (the function
is odd), thus

(25)

an = 0 ∀ n ∈ Z+

bn = (−1)n 32
π3n3 n ∈ Z+

C3 = a0
2 = 1

4

∫ 2
−2 f3(x)dx = 1

2

∫ 2
−2

(
x3

3 −
4x
3

)
dx = 0.

As a consequence

(26) f3(x) =
x3

3
− 4x

3
=

32

π3

∞∑
n=1

(−1)nsin
(nπx

2

)
n3

.

If in the previous equation we evaluate at x =1, we get the series

(27)

∞∑
n=1

(−1)n

(2n− 1)3
= −π

3

32

Now, let’s consider the function

(28)

f4(x) =
∫ x
0

(
x3

3 −
4x
3 − C3

)
dx = x4

12 −
4x2

6

= − 64
π4

∑∞
n=1

(−1)n(cos(nπx2 )−cos(nπ02 ))
n4

= − 64
π4

∑∞
n=1

(−1)n cos(nπx2 )
n4 + 64

π4

∑∞
n=1

(−1)n
n4

= − 64
π4

∑∞
n=1

(−1)n cos(nπx2 )
n4 + C4.
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We have that C3 = 0; but we include the constant to generate
the algorithm. We have that the previous expression is the Fourier
expansion of the polynomial f4(x) = x4

12 −
4x2

6 on the interval [−2, 2],
where the Fourier coefficients are

(29)

an = −64(−1)n
π4n4 , ∀ n ∈ Z+

bn = 0, ∀ n ∈ Z+

C4 = a0
2 = 1

4

∫ 2
−2 f4(x)dx = 1

4

∫ 2
−2

(
x4

12 −
4x2

6

)
dx = −28

45 .

From equations (28) and (29), we get

(30)
64

π4

∞∑
n=1

(−1)n

n4
= −28

45
.

From the previous expression we conclude that

(31)

∞∑
n=1

(−1)n

n4
= − 7

720
π4.

Therefore

(32) f4(x) =
x4

12
− 4x2

6
= −64

π4

∞∑
n=1

(−1)n cos
(
nπx
2

)
n4

− 28

45
.

Equivalently

(33) f4(x)− C4 =
x4

12
− 4x2

6
+

28

45
= −64

π4

∞∑
n=1

(−1)n cos
(
nπx
2

)
n4

.

Substituting in (32) x = 2 o x = −2, we get

(34)
24

12
− 4(22)

6
= −64

π4

∞∑
n=1

(−1)n cos(nπ)

n4
− 28

45
= −64

π4

∞∑
n=1

1

n4
− 28

45
.

Equivalently

(35)
24

12
− 24

6
= −64

π4

∞∑
n=1

1

n4
− 28

45
.
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Isolating from the above expression
∑∞

n=1
1
n4 , we have

(36) ζ(4) =
∞∑
n=1

1

n4
=
π4

90
.

From equation (33), let us obtain f5(x):

(37)

f5(x) =
∫ x
0 (f4(x)− C4)dx = x5

60 −
4x3

18 + 28x
45

= −128
π5

∑∞
n=1

(−1)n(sin(nπx2 )−sin(nπ02 ))
n5

= −128
π5

∑∞
n=1

(−1)nsin(nπx2 )
n5 + C5.

Calculating the Fourier expansion of the previous expression we get
C5 = 0. Evaluating the last equation at x = 1, we have the series

(38)
∞∑
n=1

(−1)n

(2n− 1)5
= − 5π5

1536
.

Let’s get the function f6(x), based on the foregoing

(39)

f6(x) =
∫ x
0 (f5(x)− C5)dx = x6

360 −
x4

18 + 14x2

45

= 256
π6

∑∞
n=1

(−1)n(cos(nπx2 )−cos(nπ02 ))
n6

= 256
π6

∑∞
n=1

(−1)n cos(nπx2 )
n6 − 256

π6

∑∞
n=1

(−1)n
n6

= 256
π6

∑∞
n=1

(−1)n cos(nπx2 )
n6 + C6.

Since the previous expression corresponds to the Fourier expansion of
the function, we have that C6 is defined by

(40) C6 =
1

4

∫ 2

−2
f6(x)dx =

∫ 2

−2

(
x6

360
− x4

18
+

14x2

45

)
dx =

248

945
.

From the above we obtain that

(41)

∞∑
n=1

(−1)n

n6
= − 31π6

30240
.
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So we have that f6(x) is expressed as

(42) f6(x) =
x6

360
− x4

18
+

14x2

45
=

256

π6

∞∑
n=1

(−1)n cos
(
nπx
2

)
n6

+
248

945
.

Considering that cos(nπ) = (−1)n and substituting in the previous
equation x = 2 or x = −2. Hence, isolating

∑∞
n=1

1
n6 , we get

(43)

∞∑
n=1

1

n6
=

π6

256
[f6(2)− C6] =

π6

256

[
f6(2)− 248

945

]
=

π6

945
,

which can be expressed as

(44) ζ(6) =
∞∑
n=1

1

n6
=

π6

945
.

Using the same notation, we get

(45)

ζ(2) = ζ(2(1)) =
∑∞

n=1
1
n2 = π2

6 = π2

16 [f2(2)− C2],

ζ(4) = ζ(2(2)) =
∑∞

n=1
1
n4 = π4

90 = −π4

64 [f4(2)− C4],

ζ(6) = ζ(2(3)) =
∑∞

n=1
1
n6 = π6

945 = π6

256 [f6(2)− C6].

Based on the above, we find the general expression

(46) ζ(2k) =
∞∑
n=1

1

n2k
= (−1)k+1 π

2k

4k+1
[f2k(2)− C2k],

where the following expressions are defined recursively:

(47)

f2(x) = x2

fn(x) =
∫ x
0 (fn−1(x)− Cn−1)dx, ∀ n ≥ 3, with

Cn−1 =


0 si n− 1 = 2k + 1

1
4

∫ 2
−2 fn−1(x)dx si n− 1 = 2k

∀ n ≥ 3

C2k = 1
4

∫ 2
−2 f2k(x)dx = (−1)k 4

k+1

π2k

∑∞
n=1

(−1)n
n2k ∀ k ∈ Z+

Let’s apply the above procedure to verify

(48) ζ(8) = ζ(2(4)) =

∞∑
n=1

1

n8
=

π8

9450
.
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We must obtain f8(2) for which we first need to find f7(x) in terms
of f6(x). From the equation of fn(x) defined in (47), we obtain

(49)

f7(x) =
∫ x
0 (f6(x)− C6)dx =

∫ x
0

(
x6

360 −
x4

18 + 14x2

45 −
248
945

)
dx

= x7

2520 −
x5

90 + 14x3

135 −
248x
945 .

Now, let’s obtain f8(x) in terms of f7(x). We have C7 = 0 because the
polynomial is an odd function, thus

(50)

f8(x) =
∫ x
0 (f7(x)− C7)dx =

∫ x
0

(
x7

2520 −
x5

90 + 14x3

135 −
248x
945

)
dx

= x8

20160 −
x6

540 + 14x4

540 −
124x2

945 .

Then

(51)

f8(2) = 28

20160 −
26

540 + 14(24)
540 −

124(22)
945 = − 68

315 ,

C8 = 1
4

∫ 2
−2

(
x8

20160 −
x6

540 + 14x4

540 −
124x2

945

)
dx = − 508

4725 .

From the previous expressions, we get

(52)
(−1)5 π

8

45
[f8(2)− C8] = − π8

1024

[
− 68

315 + 508
4725

]
= − π8

1024

[
− 512

4725

]
= π8

9450 .

Therefore

(53) ζ(8) = π8

9450 = (−1)5 π
8

45
[f8(2)− C8],

which is what we wanted to prove. We also get

(54)

∞∑
n=1

(−1)n

n8
= − 127 π8

1209600
.

In order to verify this, let us apply the procedure indicated in the equa-
tions (46) and (47)

(55) ζ(10) = ζ(2(5)) =

∞∑
n=1

1

n10
=

π10

93555
.
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We must obtain f10(2) for which we first have to find f9(x) in terms of
f8(x). From the equation of fn(x) defined in (47), we obtain

(56)

f9(x) =
∫ x
0 (f8(x)− C8)dx

=
∫ x
0

(
x8

20160 −
x6

540 + 14x4

540 −
124x2

945 + 508
4725

)
dx

= x9

181440 −
x7

3780 + 14x5

2700 −
124x3

2835 + 508x
4725 .

Now, let us obtain f10(x) in terms of f9(x). We have C9 = 0 because
the polynomial is an odd function, thus

(57)

f10(x) =
∫ x
0 (f9(x)− C9)dx

=
∫ x
0

(
x9

181440 −
x7

3780 + 14x5

2700 −
124x3

2835 + 508x
4725

)
dx

= x10

1814400 −
x8

30240 + 14x6

16200 −
124x4

11340 + 508x2

9450 .

Then

(58)

f10(2) = 210

1814400 −
28

30240 + 14(26)
16200 −

124(24)
11340 + 508(22)

9450

= 248
2835 ,

C10 = 1
4

∫ 2
−2

(
x10

1814400 −
x8

30240 + 14x6

16200 −
124x4

11340 + 508x2

9450

)
dx

= 584
13365 .

From the above expressions, we get

(59)
(−1)6 π

10

46
[f10(2)− C10] = π10

4096

[
248
2835 −

584
13365

]
= π10

4096

[
4096
93555

]
= π10

93555 .

Hence

(60) ζ(10) = π10

93555 = (−1)6 π
10

46
[f10(2)− C10],

which is what we wanted to prove. We also get

(61)

∞∑
n=1

(−1)n

n10
= − 73 π10

6842880
.
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4 Bernoulli numbers

In Euler’s formula

(62) ζ(2k) = (−1)k+1 (2π)2kB2k

2(2k)!
, k ∈ Z+,

even indexed Bernoulli numbers B2k appear; they define a sequence of
rational numbers. Initially they arise from the search of a formula to
know the sum of the kth powers of the first n positive integers and were
named in honor of Jacob Bernoulli who introduced them for the first
time in 1713. In a different way, Euler also established a formula to
define Bernoulli numbers.

4.1 Formula for Bernoulli numbers B2k

From equation (62) and equation (46), we obtain

(63) (−1)k+1 (2π)2kB2k

2(2k)!
= (−1)k+1 π

2k

4k+1
[f2k(2)− C2k].

From the previous expression we deduce

(64) B2k =
(2k)!

22k−14k+1
[f2k(2)− C2k], k ∈ Z+.

This expression allows us to obtain even indexed Bernoulli numbers.
In order to illustrate this, we next display calculations for the first four
even indexed Bernoulli numbers:

(65)

B2 = 2!
2142

[f2(2)− C2] = 1
16

[
4− 4

3

]
= 1

6

B4 = 4!
2343

[f4(2)− C4] = 3
64

[
−4

3 + 28
45

]
= − 1

30

B6 = 6!
2544

[f6(2)− C6] = 45
512

[
− 8

15 −
248
945

]
= 1

42

B8 = 8!
2745

[f8(2)− C8] = 315
1024

[
− 68

315 + 508
4725

]
= − 1

30
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