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On an algebraic invariant for monomials

Criel Merino 1 Pedro Antonio 2

Abstract

The interaction between Algebraic Geometry and Combinatorics
can be very fruitful. One important structure in both areas is
the set Md,n of monic monomials of degree d in n variables over
a field K. Here we consider τd,n, the minimum cardinality of
a subset T of Md,n such that every element in Md−1,n divides
at least one monomial in T . This algebraic invariant has been
defined and studied before and it is link to two radical different
conjectures: the 1-dimensional ideal generating conjecture and
the Stanley’s conjecture on the h-vector of a matroid. However,
explicit computations of non-trivial cases of the invariant have
only been done for d = 3 and all n and for n = 3 and all d. Here
we compute the invariant in the cases for d = 4 and all n, for
n = 4 with d even and for d = 5 with n odd. Our approach is
combinatorial and confirms the general formula conjectured before
by the first author of this work.
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1 Introduction

Examples of the interaction of Combinatorics and Algebraic Geometry
by combining a graph structure with an algebraic structures are abun-
dant: for example, the affirmative answer to the conjecture of Read and
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Rota-Heron-Welsh by Huh in [6] or Baker and Norine graph-theoretic
analogue of the classical Riemann-Roch theorem in [2]. Here we con-
sider the set Md,n of monic monomials of degree d in K[X0, . . . , Xn−1],
for a field K, and the graph Gd,n that has as its vertices the set Md,n,
and two monomials m and m′ are adjacent if Xim = Xjm

′ for i 6= j. We
are mainly interested in the algebraic invariant τd,n that is the minimum
cardinality of a subset T of Md,n such that every monomial of degree
d− 1 in Md−1,n divides at least one monomial in T .

The graphGd,n and the invariant τd,n have been studied by Geramita
et al. [5] in the context of Algebraic Geometry relating τd,n with the
1-dimensional ideal generating conjecture where explicit computations
of non-trivial cases for τd,n were done for d = 3 and all n and for n = 3
and all d. Also, Gd,n and τd,n have been studied by Merino et al. [7]
in Combinatorics relating τd,n with Stanley’s conjecture on the h-vector
of a matroid. The invariant τd,n was introduced independently in both
papers with different but equivalent definitions. Here we compute the
invariant τd,n in the cases for d = 4 and all n, for n = 4 with d even and
for d = 5 with n odd. Our approach is combinatorial and confirms the
general formula conjectured in [7].

2 The graph Gd,n

We start by giving some basic notions of graph theory. A subset T
of a graph G is called a clique if any two distinct vertices of T are
adjacent; the trivial graph with one vertex contains only one clique
with one vertex. A clique is a maximal clique if it is not contained in
any larger clique and it is a maximum clique if it is of maximum size. An
r-colouring of a graph is a function from the vertices of the graph to the
set of r colours, {1, 2, . . . , r}, such that adjacent vertices have different
colours. For more on graph theory, see [3]. Now, we explain some of
the combinatorial structure of Gd,n. The cardinality of the vertex set

of Gd,n is
(
d+n−1
n−1

)
. We define the standard colouring of Gd,n as the

function that assigns to Xa0
0 · · ·X

an−1

n−1 the color 0a0 + . . .+ (n− 1)an−1
mod n. In fact, the standard colouring of Gd,n is an n-colouring, thus
any clique in Gd,n contains at most n elements. Standard colouring was
independently defined in [5, 7].

We describe the vertex set of the two types of maximum cliques in
Gd,n. The set of monomials obtained by multiplying a fixed monomial of
degree d− 1 by each variable Xi, and the corresponding clique is called
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upward. The set of monomials {m/Xi} obtained from a monomial m
of degree d + 1 divisible by all variables, and the corresponding clique
is called downward. Figure 1 shows the graph G4,3, upward cliques
are triangles pointing up, and downward cliques are triangles pointing
down.
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Figure 1: The graph G4,3.

The maximum cliques in Gd,n correspond to monomials in Gd−1,n
and Gd+1−n,n. A bijection between the set of upward cliques of Gd,n and
the monomials in Gd−1,n comes directly from the definition of upward
clique. A bijection between the set of downward cliques in Gd,n with
the monomials in Gd+1−n,n is obtained from the definition of a down-
ward clique and the graph G′d+1−n,n which is the induced subgraph of
monomials which are divisible by X0 · · ·Xn−1 in Gd+1,n.

Proposition 2.1. Take integers d, n ≥ 1 and 0 ≤ i ≤ n− 1. Let Ti be
the chromatic class of i in the standard colouring of Gd,n, then it holds:

i) Ti covers the graph Gd−1,n, i. e. for any monomial m′ of degree
d− 1 there exist a monomial m ∈ Ti such that m′ ≤ m (m′|m).

ii) For any m1, m2 ∈ Ti define the sets M1 = {m ∈ Gd−1,n : m ≤
m1} and M2 = {m ∈ Gd−1,n : m ≤ m2} as the covered monomials
of m1 and m2 respectively, then M1 and M2 are disjoints; we refer
to this property saying that any covering induced by a chromatic
class is formed by disjoint sets.
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Proof. To prove the first claim take any monomial m′ of degree d−1 and
consider the associated upward clique C in Gd,n when multiplying m′ by
X0, . . . , Xn−1 respectably, observe that m′ ≤ m for each m ∈ C. Since
the standard colouring is an n-colouring, C must have one monomial
with color i for each 0 ≤ i ≤ n− 1.

To prove the second claim take 0 ≤ i ≤ n − 1. Let m1,m2 ∈ Ti
be any monomials, suppose that there exist m3 ∈ Gd−1,n such that
m3 ∈ M1 ∩ M2, i. e. m3 ≤ m1 and m3 ≤ m2. Then there exist
0 ≤ j1, j2 ≤ n − 1 such that m1 = m3Xj1 and m2 = m3Xj2 , thus
Xj1m2 = Xj0m1 and m1 is adjacent to m2 which is a contradiction
since they have the same color.

3 The invariant τd,n

The invariant τd,n was define in [5], where it is denoted τn(d), as the min-
imum cardinality of a set of vertices T of Gd,n such that every upward
clique contains a vertex of T . Clearly both definitions are equivalent.
The following result appears in that paper.

Theorem 3.1. For all n ≥ 1 and d ≥ 1 we have that τd,3 = b13
(
d+2
2

)
c

and τ3,n = b 1n
(
2+n
n−1
)
c = d(n2 + 3n)/6e.

We give a brief explanation of the interest of this invariant in Al-
gebraic Geometry. For R = K[X0, . . . , Xn−1], we say that J ⊂ R is a
monomial ideal if it is generated by monomials. When J is a monomial
ideal its number of generators ν(J) is finite, and J has a structure of
partial ordered set by setting m ≤ m′ if m|m′. In this case the set of
generators of J is the set of minimal monomials in J . When the ring
B = R/J is finite (equivalently

√
J = (X0, . . . , Xn−1)) the number of

maximal monomials not in J is the Cohen-Macaulay Type of B, denoted
r(B). The invariants ν(J) and r(B) have been studied in the general
case where J is not a monomial ideal and some conjectures has been
made about its values, see [5].

The invariant τ was used in Theorem 4.7 of [5] to bound a range of
integer values where the 1-dimensional ideal generating conjecture can
be proved using the lifting of monomial ideals. For a detailed treatment,
see [5].
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3.1 A plausible formula for τd,n

Now, we explain the interest of the invariant τ in Combinatorics. We
start by given the definitions of multicomplex and O-sequence.

Definition 3.2. A multicomplex is a set T ⊂ R of monomials such that
for every pair of monomials m and m′ such that m ≤ m′ and m′ ∈ T
then m ∈ T . A multicomplex is called pure if all its maximal elements
have the same degree.

Definition 3.3. A sequence (h0, h1, . . .) is called an O-sequence if there
is a multicomplex T with exactly hi monomials of degree i. It is called
a pure O-sequence if there is a pure multicomplex T with exactly hi
monomials of degree i.

In Combinatorics, the invariant τd,n has been used in two different
problems. The value of τd,n is used in the proof of Stanley’s conjecture
for paving matroids, see [7]. Stanley’s conjecture states that the h-vector
of a matroid is a pure O-sequence, see [8]. Also, it was conjectured in [7]
that τd,n equals the number of binary aperiodic necklaces with n white
beads and d black beads, denoted L2(n, d), and both of these number
equal the minimum cardinality of a chromatic class of the standard
colouring of Gd,n, denoted f(d, n). For reference we write this in the
following statement.

Conjecture 3.4. For all integers d, n ≥ 1,

L2(d, n) = f(d, n) = τd,n.

The next lemma is well known, it gives us a formula to count the
number of binary aperiodic necklaces with n white beads and d black
beads.

Proposition 3.5. For all integers n, d ≥ 1,

L2(d, n) =
1

d+ n

∑
k|(d+n,d)

µ(k)

(
d+ n/k

d/k

)
.
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We give a proof for the first equality of Conjecture 3.4. We use the
formula in the previos lemma and an explicit formula for the number of
solution for the system

n−1∑
j=0

jλj ≡ k (mod n);

n−1∑
i=0

λi = m,

that is denoted by ak(n,m). The following two results are in [4].

Theorem 3.6. For any integers k, n,m,

ak(n,m) =
1

n+m

∑
d|(n,m)

cd(k)

(
n/d+m/d

n/d

)
;

in particular

ak(n,m) = ak(m,n).

The value cd(k) is the sum of the k-th powers of the d-th primitive
roots of unity that is known as Ramanujan’s sum.

Proposition 3.7. For any n, m and k,

ak(n,m) =
∑

d′|(n,m,k)

a1(n/d
′,m/d′).

Proposition 3.7 tells us that the chromatic class of 1 (with the stan-
dard colouring) is minimal in terms of cardinality, and ak(n,m) is the
same as the number of monomials in Gm,n which has color k; therefore
f(d, n) equals a1(d, n). Also, It is well known that cd(1) = µ(d), so the
formula in Theorem 3.6 coincides with the formula in Proposition 3.5;
thus the first equality of the Conjecture 3.4 is true, this leds the next
Proposition.

Proposition 3.8. For all d, n ≥ 1,

L2(d, n) = f(d, n).
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4 The values τ3,n and τd,3

Our approach to finding τ3,n and τd,3 uses the combinatorial interpreta-
tion of the function f(d, n). Observe that Proposition 2.1 tells us that
any chromatic class in Gd,n induces a covering for the graph Gd−1,n,
and Proposition 3.8 gives us a way to prove the second equality of Con-
jecture 3.4. In fact, we only need to show that the covering induced by
the chromatic class of 1 uses the minimum number of elements among
all coverings of Gd−1,n. We call this covering the standard covering.

Let us fix the notation before going forward. The vertices in Gd,n

which are divisible by X0 · · ·Xn−1 are called internal vertices and the
rest of the vertices are called frontier vertices. Also, we refer to the
covering elements as vertices and the covered elements as monomials.

Next, we present two results which can be proved using Theorem 3.1
but that were obtained independently, and we include them here as
examples of the technique we are using. The proofs are not necessarily
smaller than in [5].

Theorem 4.1. For all d ≥ 1,

L2(d, 3) = f(d, 3) = τd,3.

Proof. Observe that for each vertex m in Gd,3 the monomials that are
covered by m form one of the next tree configurations: a single point
(m = Xd

i ) or a line (m = Xd−k
i Xk

j ) in the frontier of Gd−1,3, or a
downward triangle which are the downwards cliques. So the problem
reduces to find a covering for Gd−1,3 using elements of these types.

It is easy to see that the standard covering follows a pattern which
is shown in Figure 2, to continue the pattern to the next level d+ 1 we
just have to add one more level to the right of the triangle.

Observe that the subgraph G′d−3,3 induced by the monomials in Gd,3

which are divisible by X0X1X2 is isomorphic to Gd−3,3, more over, when
restricting the standard covering to this graph its easy to see that this
cover correspond to the standard covering in Gd−3,3. Therefore we pro-
ceed by induction according with the congruence modulo 3.

First we show that the standard covering use the least possible num-
ber of downward cliques to cover the internal vertices of Gd,3. Assume
by induction that it holds for d − 3 and take any covering C of Gd,3,
consider the subgraph G′d−3,3 defined above, by induction hypothesis
the covering C′ induced by C when restricting to G′d−3,3 cannot have
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Figure 2: The Standard Covering for n = 3.

less downward cliques that the standard covering of Gd−3,3 and it only
remains to cover some monomials in the frontier of G′d−3,3, if there are
k remaining monomials we need at least dk/2e elements to cover them
since there is no vertex in Gd,3 which covers 3 monomials in the frontier
of G′d−3,n, this is exactly what the standard covering does, so the cov-
ering C cannot have less downward cliques than the standard covering.
The base cases are trivial to verify that they use the minimum possible
number of downward cliques to cover Gd,3.

Next we prove that for the cases d ≡ 1, 2mod 3 the standard covering
uses the maximum number of downward cliques without intersection
between them. Figure 3 shows that this is the case for every d 6= 5
(optimality for d=5 has to be verified by inspection), we observe that
if the pattern of the standard covering is not used then the highlighted
points cannot be covered without using a downward clique intersecting
another one used before.

The cases where d ≡ 0 mod 3 has a configuration that uses exactly
one extra downward clique than the standard covering which is shown
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a) b)

Figure 3: Coverings with disjoints Downward Cliques.

in Figure 4, but this configuration isolates the vertices of the form Xd
i

so this result in using one element for each of this vertices and uses more
elements than the standard covering.

An easy induction argument shows that for d ≡ 1, 2 mod 3, if a cov-
ering has l ≥ 1 additional downward cliques than the standard covering
then it has at least l intersection, and for d ≡ 0 mod 3, if a covering
has l ≥ 2 additional downward cliques then it has at least l intersection,
in both cases the standard covering cannot be improved by augment-
ing the number of downward cliques. To finish the proof observe that
the remaining m vertices that are not covered by downward cliques are
covered as best as possible since they are covered by m/2 disjoint lines
when m is even and (m− 1)/2 disjoints lines and one point when m is
odd.

Theorem 4.2. For all n ≥ 1,

τ3,n = f(3, n) = L2(3, n).

Proof. We proceed as before showing that the standard covering is op-
timal using the least possible number of elements to cover G2,n. The
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Figure 4: Configuration with maximum number of disjoints
Downward Cliques for d ≡ 0 mod 3.

vertices of the form x2i can be covered only by monomials of the form
X3

i or X2
iXj (i 6= j), observe that the standard covering uses at most

one vertex of the form X3
i since the congruence 3i ≡ 1 modulo n has at

most one solution, see Figure 5. After covering the vertices X2
i it only

remains to cover vertices of the form XiXj (i 6= j), say there are k of
them, observe that vertices in G3,n can cover at most tree monomials
in G2,n, then, to cover the remaining monomials we need at least dk/3e
elements. But these remaining monomials are covered by the standard
covering with vertices of the form XiXjXk (i, j, k all distinct), also we
know that the standard covering uses disjoints elements (Proposition 2.1
ii)), so it uses exactly dk/3e elements, which is the best possible.

5 The case τd,4

We compute τd,4, i. e. we have 4 variables and monomials with degree d.
We need to cover the graph Gd−1,4 by four type of structures: points at
the corners of the biggest tetrahedra, formed by the monomials {Xd−1

0 ,
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Figure 5: Standard covering for G2,8.

Xd−1
1 , Xd−1

2 , Xd−1
3 }; segments on lines between two points along the

edges of the biggest tetrahedra; triangles, pointing down, on the faces on
the biggest tetrahedra; and tetrahedrons, pointing down, in the inner
part. To achieve our goal, we examine the vertices in Gd,4 and find
out how they cover monomials in Gd−1,4. This is similar to the case of
τd,3; we find the pattern of the standard covering by analysing Figure 6,
where the standard covering is shown, and continuing the covering to
the next level. We have the following result.
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Figure 6: Standard covering for G4,4.
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Theorem 5.1. For all d ≥ 1 even,

τd,4 = f(d, 4) = L2(d, 4).

Proof. The pattern of the standard covering can be obtained by inspec-
tion, but it is hard to proof the theorem this way, so instead we use
counting arguments. First, we refer as internal monomials the monomi-
als in Gd,4 which are divisible by X0X1X2X3, we call edge monomials
the monomials in Gd,4 which has at most 2 variables and we call face
monomials to the rest of the monomials in Gd,4 which are the monomi-
als with exactly 3 variables.

It easy to check that the total monomials in Gd,4 is (d3 +6d2 +11d+
6)/6, the number of internal monomials is Id = (d3 − 6d2 + 11d− 6)/6,
the number of face monomials is Fd = (2d2 − 6d + 4) and the number
of edge monomials is Ed = 6d− 2.

The minimum number of tetrahedrons needed to cover the internal
monomials is achieved by the standard covering, this follows from an
easy induction argument, so we only consider configuration with at least
this number of tetrahedrons.

Consider the configuration shown in Figure 7, this configuration is
obtained by considering the graph Gd,4 as a pyramid, the base case is
when d = 3, the configurations has only one tetrahedra on the first floor.
Assume we have constructed the configuration for d = 2k + 1, to con-
struct the configuration for d = 2(k+1)+1 add two floors to the bottom
of the pyramid, and add the configuration k(k + 1)/2 disjoint tetrahe-
drons on the first floor as shown in the first part of Figure 7, here we
assume d is even, since this configuration does not work for d odd. An
easy induction argument shows that this configuration uses the maxi-
mum number of disjoints tetrahedrons to cover the internal monomials.
Also, this configuration uses exactly (d3 − 6d2 + 11d − 6)/6 tetrahe-
drons, 2 more than the standard covering, so this configuration covers
(d3−6d2+11d−6)/2 face monomials and the rest of face monomials has
to be covered by triangles and we need at least (d3−6d2 + 11d−6)/6 of
them, observe that this can be done with disjoint triangles. This leaves
all edge monomials uncovered, and the best we can do (if possible) is
use Ed/2 = 3d − 1 disjoint lines to cover them. In total we have used
(d3−6d2+11d−6)/6+(d3−6d2+11d−6)/6+3d−1 = (d3−6d2+20d−9)/3
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elements to cover Gd,4. Using the formula given by Proposition 3.5 and
the first equality of the Conjecture 3.4 we see that the number of ele-
ments in the standard covering of Gd,4 is f(d, 4) = (d3 + 6d2 + 8d)/24
which is smaller, so this configuration does not improve the standard
covering.

Figure 7: Maximal configuration of disjoint tetrahedrons for
G5,4.

Now consider the configuration with exactly 1 more tetrahedra than
the standard covering, in fact the induced covering of the chromatic
class of 2 satisfies this, since this configuration is unique (up to sym-
metries) the best way to cover the remaining monomials is achieved
by the chromatic class of 2 it self, but we know that this covering has
more elements than the standard covering, so this configuration with
exactly one more tetrahedra does not improve the standard covering.
Now consider configurations with l ≥ 3 additional tetrahedrons than the
standard covering, we can use induction to see that this configurations
has at least l intersection of the tetrahedrons, so the number of elements
can not be improved. To finish the proof observe that the standard cov-
ering covers the remaining monomials optimally since it uses disjoints
elements.

6 The case τ4,n

The case for d = 4 and all n is our more general result.

Theorem 6.1. For all n ≥ 1,

τ4,n = f(4, n) = L2(4, n).

Proof. We proof that the standard covering is optimal. Consider sepa-
rately the cases when n is odd or even. When n is even the congruences
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4i ≡ 1 modulo n and 2(i + j) ≡ 1 modulo n do not have solutions,
so vertices of the form X4

i and X2
iX

2
j (i 6= j) do not belong to the

chromatic class of 1. This implies that a vertex X3
i is covered by X4

i

and a vertex X2
iXj is covered by X2

iXjXk (i, j, k all distinct), this
guarantees that vertices in G4,n with at most 2 variables are covered
optimally since each vertex is covered by a monomial that maximise the
elements covered and the standard covering is formed of disjoints sets.
The remaining vertices are of the form XiXjXk (i, j, k all distinct),
but they are covered optimally by monomials XiXjXkXl (i, j, k, l all
distinct) since the sets are disjoints.

When n is odd the congruence 4i ≡ 1 modulo n has exactly one solu-
tion, and congruence 2(i+ j) ≡ 1 modulo n can have several solutions.
In order to proof that the standard covering is optimal we argument
that a minimal covering of G4,n has to satisfy certain constrain about
its cardinality and then we show that the standard covering achieves
this constrain and so is optimal. First observe that a vertex X3

i can
be covered only by X4

i or X3
iXj , the second covering two monomials,

for convenience we assume that an optimal covering uses all but one
vertices X3

iXj and one vertex X4
k0

. Now we need to cover the vertices
of the form X2

iXj , these vertices can be covered by X2
iX

2
j or X2

iXjXk

(X3
iXj are already used), we need to maximise the number of covered

vertices so we maximise the number of monomials X2
iXjXk used. A

monomial X2
iXjXk covers X2

iXj , X
2
iXk and XiXjXk, so we observe

that for each i 6= k0 there are n− 2 vertices X2
iXj that are not covered

yet, among these, we can cover n− 3 disjointly (since n− 2 is odd) by
monomials X2

iXjXk, then we would need at least (n−1)(n−32 ) elements
(see Figure 8).

For i = k0 we need at least n−1
2 elements. This give us n2−3n+2

2
elements. Among all vertices X2

iXj we covered at most n2 − 3n+ 2, so
there are at least 2

(
n
2

)
− (n2 − 3n + 2) = 2(n − 1) left. To cover these

2(n− 1) vertices we need at least n− 1 elements since now we only can
use monomials of the form X2

iX
2
j . Next we need to cover the vertices

XiXjXk, we have at least
(
n
3

)
− n2−3n+2

2 = 1
6(n3−6n2+11n−6) vertices

and these vertices need to be covered by at least 1
24(n3− 6n2 + 11n− 6)

monomials of the form XiXjXkXl.

Resuming all arguments above, any optimal covering of G4,n need

at least n elements to cover the vertices X3
i , n2−3n+2

2 + n−1
2 to cover

the vertices X2
iXj (this elements cover at most n2 − 3n + 2 vertices of
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X3
i

X2
i Xjn−1

X2
i Xj1

X2
i Xj2 X2

i Xjn−2

Figure 8: Vertices X3
i and X2

iXjn−1 are covered by X3
iXjn−1.

the form XiXjXk) and 1
24(n3 − 6n2 + 11n − 6) elements to cover the

remaining vertices of the form XiXjXk. Adding these numbers give us
at least 1

24(n3 + 6n2 + 11n+ 6) elements. Using the formula for f(d, n)
given by Lemma 3.5 we have that the standard covering has

1

n+ 4

∑
d|(n+4,4)

µ(d)

(
n/d+ 4/d

4/d

)

elements, since n is odd, d only takes the valor 1, so the standard cov-
ering has exactly

1

n+ 4

(
n+ 4

4

)
=

1

24
(n3 + 6n2 + 11n+ 6)

elements which is the minimum in any optimal covering, thus the result
follows.

7 The case τ5,n for an odd integer n

We compute τ5,n, i.e. when there are n variables and the monomials
have degree 5. Again, we analyze the way monomials of degree 5 cover
the graph G4,n.

First we divide the vertices of G4,n into 3 disjoint sets: Kn, T 1
n and

T 2
n . The set Kn has all monomials of G4,n with at most 2 variables. Kn

induces a subgraph isomorphic to a subdivision of Kn, that is, between
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each pair of monomials {X4
i , X

4
j } there is a path form by the monomials

X3
iXj , X

2
iX

2
j and XiX

3
j . The set T 1

n has all monomials of the form

X2
iXjXk with i, j k distinct, and set T 2

n has all monomials of the form
XiXjXkXm with i, j, k and m distinct. There are also edges between
Kn and T 1

n , and between T 1
n and T 2

n .
Figure 9 shows how vertices of degree 5 covers the graph G4,n.

There are 7 types of vertices of degree 5: Vertices of the form X5
i ,

X4
iXj , X

3
iX

2
j , X3

iXjXk, X2
iX

2
jXk, X2

iXjXkXl and XiXjXkXlXm; we
call these vertices of type 1, 2, . . ., and 7 respectively.

X 4
i X 3

i X j

X 2
j X

2
m

X 2
i X j X k

X 2
j X mX n

X j X
2
mX n

K n T 1
n T 2

n

X iX j X kX m

X iX j X kX l

· · ·· · ·
· · ·

· · ·

· · ·

Figure 9: Vertices of degree 5 covering monomials in G4,n.

Observe that each type of vertices covers monomials in G5,n in a
certain manner. Vertices of type 1, 2 and 3 cover monomials in Kn,
vertices of type 4 and 5 cover monomials in both Kn and T 1

n , vertices
of type 6 cover monomials in both T 1

n and T 2
n , while vertices of type 7

only cover monomials in T 2
n ; this behaviour is shown in Figure 9. We

use this behaviour to show that when n is odd the Conjecture 3.4 holds.

Theorem 7.1. For all n ≥ 1 odd,

τ5,n = f(5, n) = L2(5, n).

Proof. We give some cardinality constrain about any optimal covering
of G4,n and show that the standard covering reaches this number, thus
showing that it is optimal.
First consider the case n ≡ 0 modulo 5. Observe that monomials of the
form X4

i can be covered only by vertices of type 1 and 2, observe that
without loss of generality we can assume that any optimal covering of
G4,n uses vertices of type 2. Now we need to cover monomials of the
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form X3
iXj ; for each 0 ≤ i ≤ n− 1 there are n− 2 adjacent monomials

to X4
i that are not covered yet, these monomials can be covered with

vertices of type 3 and 4, since type 4 vertices covers exactly one more
monomial than type 3 vertices the best we can do is use as much as
possible vertices of type 4 without intersecting any monomial already
covered or having intersections between them; observe that if there exist
an intersection then by counting the resulting covering will not improve
the number of elements. So we use (n− 3)/2 (n− 2 is odd) vertices of
type 4 for each i, thus using n(n− 3)/2 vertices of type 4 in total. Now
we have for each i exactly one monomial X3

iXj not covered, the best
we can do is use a vertex of type 3 (without intersection), so we use n
vertices of type 3 in total. After using vertices of type 3 and 4 we have(
n
2

)
− n monomials of the form X2

iX
2
j not covered yet, the best we can

do is use vertices of type 5 to cover these remaining monomials in Kn,
so we use in total

(
n
2

)
− n vertices of type 5.

Now we have covered Kn in such a way that we maximize the num-
ber of monomials covered in T 1

n and minimizing the elements used,
since we are assuming that our covering is formed by disjoint sets.
The next step is cover the remaining monomials in T 1

n , the best we
can do is use vertices of type 6 and assuming that the covering is dis-
joint. We have (n3 − 3n2 + 2n)/2− (n2 − 3n)/2− 2((n2 − n)/2− n) =
n3−6n2+11n

2 monomials not covered in T 1
n , so we use n3−6n2+11n

6 vertices
of type 6 to cover all of them (if possible) and these vertices covers
n3−6n2+11n

2 monomials in T 2
n . To finish it only remains to cover the

n4−6n3+11n2−6n
24 − n3−6n2+11n

2 = n4−10n3+35n2−50n
24 monomials left in T 2

n ,

the best we can do is use n4−10n3+35n2−50n
120 vertices of type 7. Observe

that all our arguments above need the constructed covering (if it exists)
to be disjoint in order to guarantee that this covering can not be im-
proved and thus be optimal, to finish the proof we only need to show
that the standard covering achieves this number of elements since the
standard covering is disjoint by Proposition 2.1. The numbers of ver-
tices used is n, n(n− 3)/2, n,

(
n
2

)
−n, n3−6n2+11n

6 and n4−10n3+35n2−50n
120

of type 2, 4, 3, 5, 6 ans 7 respectably, adding this number we have
n4+10n3+35n2+50n

120 elements in total, using the formula for f(n, 5) given by

the first equality of Conjecture 3.4 we have f(n, 5) = n4+10n3+35n2+50n
120

and the result follows.

Now we consider the case n 6≡ 0 modulo 5, the main difference be-
tween this case and the former is that the standard covering use exactly
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one vertex of type 1 to cover a monomial of the form X4
i since in this

case the congruence 5i ≡ 1 modulo n has exactly one solution, but we
can use the same arguments since the covering using only one vertex
of type 1 cannot be improved by the number of elements used, again
assuming the constructed covering is disjoint. For this case we use 1 ver-
tex of type 1, n−1 vertices of type 2, (n−1)(n−3)/2+(n−1)/2 vertices
of type 4, n− 1 vertices of type 3 and

(
n
2

)
− (n− 1) vertices of type 5 to

cover all monomials in Kn, in total they are n2 − n+ 1, as before, this
covering maximises the number of monomials covered in T 1

n . Now we

have (n3− 3n2 + 2n)/2− (n2−n+ 1) = n3−6n2+11n−6
2 monomials in T 1

n

not covered yet, so we use n3−6n2+11n−6
6 vertices of type 6. To finish the

covering we have n4−6n3+11n2−6n
24 − n3−6n2+11n−6

6 = n4−10n3+35n2−50n+24
24

monomials not covered yet in T 2
n , so we use n4−10n3+35n2−50n+24

120 ver-
tices of type 7. Adding all vertices used to construct this covering yields
n4+10n3+35n2+50n+24

120 in total; to complete the proof we only need to see
that the standard covering reaches this number of a optimal covering,
this is straightforward from the first equality of Conjecture 3.4 and the
formula for f(5, n).

8 Conclusions

We compute the algebraic invariant τd,n for the cases d = 4 and all n,
for n = 4 with d even and for d = 5 with n odd. These values extend the
previous knowledge about τ given in [5]. Also, our result confirms the
general formula conjectured in [7] for these particular cases. We suggest
that the computed values can be used as an initial step to compute the
relevant bounds for the 1-dimensional ideal generating conjecture.

The independence number and the minimum cardinality of an up-
ward clique cover of Gd,n has been studied in [1]. They find an exact
value for the independence number for Gd,4 and compare this number
with the number of 2x2 non negative integer matrices such that the sum
of its entrances is equal to d. Also, they present an algorithm to bound
the minimum cardinality of an upward clique cover.

The fact that τd,n = τn,d for the cases d = 1, 2, 3, for all n, and d = 4,
for n even, hints to the possibility that the equality is true for all d and
n. We find this a tantalizing problem. If true, it may imply that the
collection of graphs {Gd,n} has an involution which works as a duality
operation. However, we were unable to find such an operation, and
even a bijective proof of this equality in the case d = 3 and d = 4 seems
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difficult to generalize to all values of n and d. Notice that Conjecture 3.4
implies τd,n = τn,d.
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